
Matteo Morini°* Simone Pellegrino*

°Institut Rhône-Alpin des Systèmes Complexes (IXXI), ENSL, Ecole Normale Superieure Lyon

*Department of Economics, Sociology, Mathematics and Statistics, University of Torino

matteo.morini@ens-lyon.fr
simone.pellegrino@unito.it
Public Finance

Fiscal Reforms during Fiscal Consolidation

Assessing the Distributional Effects of Housing Taxation: From the Actual Tax Code to Imputed Rent

The 2007 Personal Income Tax Reform in Italy: Effects on Potential Equity, Horizontal Inequity and Re-ranking

Tax Systems and Tax Reforms in New EU Members
The Tax System in Italy

Sources of law:

D.P.R. 22 Dicembre 1986, n.917

a.k.a. "Testo unico delle imposte sui redditi" (TUIR)
Sources of law:

D.P.R. 22 Dicembre 1986, n.917

a.k.a. “Testo unico delle imposte sui redditi” (TUIR)

+ several fantasticatrillions of revisions
The Tax System in Italy
The Tax System in Italy

Personal Income Tax (PIT)

• Structure defined by Parameters
 • marginal tax rates
 • thresholds
 • allowances and deductions
 • tax credits
 • …

(more than thirty parameters)
Micromodel data

Empirical data:
Bank of Italy Survey on Households Income and Wealth (BI-SHIW 2012)
representative weighted sample

~8,000 households, ~20,000 individuals
(out of ~24 m, ~60 m)

Disposable income data
(PIT taxable income only)

Post- to Pre-tax procedure:
Imputation of Gross Amounts from Net Incomes in Households Surveys

Figure 1: Frequency density function for all individual taxpayers
The Tax System in Italy (F.Y. 2010)

Table 3: Present and computed parameters of the tax

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Present value</th>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0.23</td>
<td>0.208939</td>
</tr>
<tr>
<td>t_2</td>
<td>0.27</td>
<td>0.292568</td>
</tr>
<tr>
<td>t_3</td>
<td>0.38</td>
<td>0.376198</td>
</tr>
<tr>
<td>t_4</td>
<td>0.41</td>
<td>0.404304</td>
</tr>
<tr>
<td>t_5</td>
<td>0.43</td>
<td>0.428702</td>
</tr>
<tr>
<td>UL_1</td>
<td>15,000</td>
<td>19,521.3</td>
</tr>
<tr>
<td>UL_2</td>
<td>28,000</td>
<td>28,682.9</td>
</tr>
<tr>
<td>UL_3</td>
<td>55,000</td>
<td>44,121.9</td>
</tr>
<tr>
<td>UL_4</td>
<td>75,000</td>
<td>59,560.9</td>
</tr>
<tr>
<td>m_1</td>
<td>8,000</td>
<td>13,664.9</td>
</tr>
<tr>
<td>m_2</td>
<td>7,500</td>
<td>10,432.3</td>
</tr>
<tr>
<td>m_3</td>
<td>7,750</td>
<td>12,213.7</td>
</tr>
<tr>
<td>m_4</td>
<td>4,800</td>
<td>7,489.4</td>
</tr>
<tr>
<td>a_1</td>
<td>502</td>
<td>2,078.6</td>
</tr>
<tr>
<td>a_2</td>
<td>470</td>
<td>1,513.0</td>
</tr>
<tr>
<td>a_3</td>
<td>486</td>
<td>1,829.4</td>
</tr>
<tr>
<td>$C_i^{2/in}$</td>
<td>800</td>
<td>1,856.9</td>
</tr>
<tr>
<td>u</td>
<td>110</td>
<td>1,134.0</td>
</tr>
<tr>
<td>w</td>
<td>40,000</td>
<td>28,344.2</td>
</tr>
<tr>
<td>k</td>
<td>80,000</td>
<td>78,343.7</td>
</tr>
<tr>
<td>$C_i^{2/q}$</td>
<td>750</td>
<td>744.8</td>
</tr>
<tr>
<td>$C_i^{2/lp1}$</td>
<td>800</td>
<td>744.8</td>
</tr>
<tr>
<td>$C_i^{2/lp2}$</td>
<td>900</td>
<td>744.8</td>
</tr>
<tr>
<td>$C_i^{2/lp3}$</td>
<td>1,000</td>
<td>1,774.4</td>
</tr>
<tr>
<td>$C_i^{2/lp4}$</td>
<td>1,100</td>
<td>2,887.2</td>
</tr>
<tr>
<td>q</td>
<td>95,000</td>
<td>110,000.0</td>
</tr>
<tr>
<td>e</td>
<td>15,000</td>
<td>20,291.7</td>
</tr>
<tr>
<td>$C_i^{2/HF}$</td>
<td>1,200</td>
<td>3,298.5</td>
</tr>
</tbody>
</table>

Tenants
- Tenants 1: 300
- Tenants 2: 150
- Tenants 3: 992

Expenditures
- Expenditures 1: 0.19
- Expenditures 2: 0.36

Source: Own elaborations based on II-SHHW.
Table 3: Present and computed parameters of the tax

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Present value</th>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_1</td>
<td>0.23</td>
<td>0.208939</td>
</tr>
<tr>
<td>l_2</td>
<td>0.27</td>
<td>0.292568</td>
</tr>
<tr>
<td>c_0</td>
<td>0.38</td>
<td>0.376198</td>
</tr>
<tr>
<td>l_4</td>
<td>0.41</td>
<td>0.404304</td>
</tr>
<tr>
<td>l_6</td>
<td>0.43</td>
<td>0.428702</td>
</tr>
<tr>
<td>UL_1</td>
<td>15,000</td>
<td>19,521.3</td>
</tr>
<tr>
<td>UL_2</td>
<td>28,000</td>
<td>28,682.9</td>
</tr>
<tr>
<td>UL_3</td>
<td>55,000</td>
<td>44,121.9</td>
</tr>
<tr>
<td>UL_4</td>
<td>75,000</td>
<td>59,560.9</td>
</tr>
<tr>
<td>m_1</td>
<td>8,000</td>
<td>13,664.9</td>
</tr>
<tr>
<td>m_2</td>
<td>7,500</td>
<td>10,432.3</td>
</tr>
<tr>
<td>m_3</td>
<td>7,750</td>
<td>12,213.7</td>
</tr>
<tr>
<td>m_4</td>
<td>4,800</td>
<td>7,489.4</td>
</tr>
<tr>
<td>a_1</td>
<td>502</td>
<td>2,078.6</td>
</tr>
<tr>
<td>a_2</td>
<td>470</td>
<td>1,513.0</td>
</tr>
<tr>
<td>a_3</td>
<td>486</td>
<td>1,829.4</td>
</tr>
<tr>
<td>$C_i^{2.50}$</td>
<td>800</td>
<td>1,856.9</td>
</tr>
<tr>
<td>u</td>
<td>110</td>
<td>1,134.0</td>
</tr>
<tr>
<td>w</td>
<td>40,000</td>
<td>28,344.2</td>
</tr>
<tr>
<td>k</td>
<td>80,000</td>
<td>78,343.7</td>
</tr>
<tr>
<td>$C_i^{2.50}$</td>
<td>750</td>
<td>744.8</td>
</tr>
<tr>
<td>$C_i^{2.50p1}$</td>
<td>800</td>
<td>744.8</td>
</tr>
<tr>
<td>$C_i^{2.50p2}$</td>
<td>900</td>
<td>744.8</td>
</tr>
<tr>
<td>$C_i^{2.50p3}$</td>
<td>1,000</td>
<td>1,774.4</td>
</tr>
<tr>
<td>$C_i^{2.50p4}$</td>
<td>1,100</td>
<td>2,887.2</td>
</tr>
<tr>
<td>q</td>
<td>95,000</td>
<td>110,000.0</td>
</tr>
<tr>
<td>e</td>
<td>15,000</td>
<td>20,291.7</td>
</tr>
<tr>
<td>$C_i^{2.50fr}$</td>
<td>1,200</td>
<td>3,298.5</td>
</tr>
</tbody>
</table>

Tenants 1
- 300
- 201.2

Tenants 2
- 150
- 201.2

Tenants 3
- 992
- 201.2

Expenditures 1
- 0.19
- 0.185513

Expenditures 2
- 0.36
- 0.406797

Source: Own elaborations based on II-SSW.
Goals:

- Maximize redistributive effect
- Minimize worse-off taxpayers
- Hit an (exogenously) given tax revenue
Given tax revenue

Alternative scenarios:

- Ante reforms: ~148 bn €
- 2014 tax cut (8 months): ~7 bn € less
- 2015 tax cut (whole F.Y.): ~10.5 bn € less [expected]
Redistributive effect

Overall situation:

- Average tax rate = 18.7%

Inequality indices:

- Gini coefficient
 - 0.4433 Gross income distribution
 - 0.3914 Net income distribution

- Redistributive Effect = 0.0519

- Concentration coefficient
 - 0.3908 Net income distribution
 - 0.6722 Net tax liability distribution

- Reynolds-Smolensky = 0.0526

- Kakwani = 0.2288

- Atkinson-Plotnik-Kakwani = 0.00062
Redistributive effect

Overall situation:

- Average tax rate = 18.7%

Inequality indices:

- Gini coefficient
 - 0.4433 Gross income distribution
 - 0.3914 Net income distribution

- Redistributive Effect = 0.0519

- Concentration coefficient
 - 0.3908 Net income distribution
 - 0.6722 Net tax liability distribution

- Reynolds-Smolensky = 0.0526

- Kakwani = 0.2288

- Atkinson-Plotnik-Kakwani = 0.00062
Optimum search

- Micromodel
 - *Pypy, numpy, pandas*
- Genetic Algorithm (RCGA)
 - *Pyevolve* (a few bugs fixed in the process)
- (tedious) trimming of GA parameters
 - *Roulette wheel selection, low mutation rate, high crossover rate*
- Observe sizeable convergence
- Done (2.000 ind. X 1.000 gen.)
Enter agents

Until here, real-world accurate empirical data

From now on, (slight) departure from strict adherence to faithful detail

- Best-effort estimates of (group) **elasticities**
 - labor supply (Saez et al. 2009), check
Enter agents

- Facts
 - higher income deciles respond more
 - retired people: no control on income from pension

- Issues
 - women labor participation
 - top individual tax rate vs corporate tax rate
 - charitable donations
 - people hires more skilled tax consultants
 - tax avoidance/evasion
 - shifts from taxable income to untaxable benefits
 - income/substitution effects neglected
Elasticity is really HARD to capture.

Extra problem: intertemporal features

short-term knee-jerk reactions vs long-term planning

- anticipation! Shifting earnings before the change
Reactions as elasticity

- Elasticity estimates: 0.12 - 0.40
- Made proportional to incomes
- Some random dispersion added
Reactive agents

- Assuming (heroically) constant pre-tax incomes across years
- Agents compare their Post-tax income from year n-1 and year n
- Agents adjust their income according to their elasticity \(\varepsilon \leq 0 \)

Elasticity of reported incomes with respect to the "net-of-tax rate" defined as the percent change in reported income when the net-of-tax rate increases by 1%

Optimal taxation structure becomes a moving target to the GA
Incremental optimization

Iterative process:

1. GA optimization step (n generations)
2. taxpayers' reaction

Repeat ad libitum

Two alternative interpretations
Introducing an interaction space:

- No "social" data available
 - (it's either households or individuals)

- Synthetic networks

- Imitation, influence
What now?

Can the very existence of social networks lead to cascading effects?

Thank you.

matteo.morini@ens-lyon.fr