As close as you can get to finding the cause of disease with Agent-Based Modeling

Virginia A. Folcik, Ph.D. and Gerard J. Nuovo, M.D.
The Ohio State University at Marion, and Phylogeny, Inc.
Koch’s Postulates (for cause and effect due to a pathogen)

1. The virus should be found in all animals with the disease, but not in animals without the disease.
2. The virus must be isolated from a diseased animal and grown in pure culture.
3. The virus should cause disease when it is introduced into an animal.
4. The virus should be re-isolated from the animal in #3, and shown to be identical to the virus in #1.
Basic Immune Simulator 2010

Programmed using Repast J 3.0

Recursive Porous Agent Simulation Toolkit
Created by the Social Science Research Computing Department of the University of Chicago, Argonne National Laboratory.

Now managed by the non-profit volunteer Repast Organization for Architecture and Development (ROAD).

http://repast.sourceforge.net
Basic Immune Simulator-Lung

Model Purpose: The BIS-Lung was created to study the behavior of the immune system in the lung, to gain insight into how injuries of unknown origin could lead to a disease called Idiopathic Pulmonary Fibrosis (IPF).

What is IPF?
Idiopathic Pulmonary Fibrosis

• A fibrotic, restrictive, lung disease of unknown cause
• Major symptom: shortness of breath
• Most patients are in their late 50s/early 60s
• By the time a patient is definitively diagnosed (by exclusion) they only have a few years to live
• There is currently no effective treatment
Normal lung alveoli

- Endothelial cell (continuous type)
- Red Blood Cells
- Fibroblast
- Elastic fibers
- Alveolar space
- Alveolar capillary
- Type II Epithelial Cell
- Type I Epithelial Cell
normal lung

Type II Epithelial cells
Idiopathic Pulmonary Fibrosis
Highest level entities represented in the model:

- Respiratory system
- tissues/spaces
 1. lungs
 2. lymph nodes
 3. blood

: Idiopathic pulmonary fibrosis usually affects lower lobes, also the most distal parts of the lung where the alveoli are.
Entities, state variables and scales included in the BIS-Lung:

i. Three virtually connected *spaces* representing the relevant *tissues*.

ii. Many *agent* types, representing the *cells* of the *tissues* system. The *agents* representing cells of the *immune system* travel between the *spaces*.

iii. The *agents* produce *signals*, representing *cytokines* or other *molecules* excreted by *cells*. These communicate the status of an *agent* to other *agents* that have receptors, i.e. the ability to sense the *signals*.
Figure 1a. BIS-Lung Zone 1 at Initiation of Injury

Figure 1a shows the results of a test run of the BIS-Lung with a sterile injury to the epithelium. White space is air space. In the non-injured alveolus, two type I epithelial agent/cells are visible (yellow), and two type II epithelial agent/cells are visible at the left and right (gray). The injured epithelial agent/cells have red Xs in them. The light pink agents/cells are macrophages, the bright green agent/cells are fibroblasts. The capillary has an endothelial agent/cell (purple) around the lumen, and red blood cells (RBCs; blue) in the lumen. Portal Agents are red. Endothelial agent/cells also have red Xs when they are injured.

Figure 1b. BIS-Lung Zone 1 after Progression of Injury

Figure 1b shows how excess collagen or fibrosis (brown) expands the interstitial space and distorts the alveolar spaces. Bare basement membrane is light green.
Time

• Time is represented as discrete, sequential “ticks”, emulating concurrency.

• At each tick, every agent is allowed to examine its environment and execute any conditional behavior.

• Time is abstractly represented in the model, but the correct sequence of events emerges from the behavioral rules of the agents.
Basic Immune Simulator (BIS_2010)
Cell/Agent Types:

- **Parenchymal Cells** impart tissue function
- **Dendritic Cells** tissue surveillance, antigen presentation
- **Macrophages** killing pathogens, phagocytosis/scavenging
- **Granulocytes** killing pathogens, lysis
- **Natural Killer Cells** kill stressed cells
- **CTLs** \(CD8^+ \) T lymphocytes, cell mediated immunity
- **T Cells** \(CD4^+ \) T lymphocytes (\(T_{\text{H}1}, T_{\text{H}2}, T_{\text{H}17}, T_{\text{reg}}, T_{\text{FH}} \))
- **B Cells** lymphocytes, humoral immunity (Antibodies)
- **Portals** blood vessels, lymphatic ducts
New Basic Immune Simulator-Lung
Agent Types:

New Parenchymal Agents

• Epithelial Type I Cells *Cover alveolar-air interface*
• Epithelial Type II Cells *Make surfactant, regeneration*
• **Fibroblasts** *Heal wounds, make collagen*
• Endothelial Cells *Line the inside of blood vessels*

Other New Agent Types

• **RBCs** *Carry O₂/CO₂*
• Platelets *Coagulation*
Laboratory experiments...

• Some of the agents and signals included in the BIS_2010 and BIS_Lung were not previously studied in human lungs, in the context of IPF.

• The **model was incomplete without this information**. This is how an ABM can direct a modeler to the relevant laboratory questions.

• The experimental data yielded some unexpected and interesting results.
<table>
<thead>
<tr>
<th>Antibody name (antibody)</th>
<th>Description</th>
<th>Source</th>
<th>Dilution</th>
<th>Tissue pretreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR6</td>
<td>Chemokine receptor 6; ligands are CCL20 (MIP-3α or LARC) and human β-defensin-2. Expressed on memory T cells, B cells and dendritic cells; highly expressed on Th-17s.</td>
<td>Abcam</td>
<td>1:200</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD1a</td>
<td>Leu6, OKT8; found on T cells, normal Langerhans cells, immature dendritic cells, and cortical thymocytes. It functions in dendritic cell presentation of glycolipid antigens and dendritic cell anti-tumor response. In disease states, it labels histiocytes and leukemic thymocytes.</td>
<td>Abcam</td>
<td>1:10</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD3</td>
<td>OKT3; an integral membrane protein complex that is part of the T-cell antigen receptor</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD4</td>
<td>OKT4, Ly1, Leu3; marker of T-helper lymphocytes</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD8</td>
<td>OKT8, Ly2/Ly3, Leu2; marker of cytotoxic T lymphocytes; a coreceptor with cCD3 for antigens displayed by MHC Class I antigen-presenting cells</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD20</td>
<td>L26; a common B-cell surface marker for all but the initial and final stages of B-cell differentiation; used as a target for eliminating B cells with rituximab in lymphomas and autoimmune diseases</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD34</td>
<td>Common surface marker for adult hematopoietic progenitor cells, murine hematopoietic cells, fibrocytes, and endothelial cells</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD45</td>
<td>Leukocyte cell surface glycoprotein, mononuclear cells, and fibrocytes</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD45RO</td>
<td>UCHL1; memory T cells, fibrocytes, monocytes, and macrophages</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD56</td>
<td>N-CAM, NKH-1, Leu-19; marker for natural killer cells</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD68</td>
<td>KP1, macrosidein; glycosylated membrane protein expressed by tissue macrophages, Langerhans cells, monocytes, and fibrocytes</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>CD80</td>
<td>B7-1, BB1; a co-stimulatory molecule found on antigen-presenting cells, including dendritic cells, activated B-cells, macrophages, and epithelial cells</td>
<td>Abcam</td>
<td>1:100</td>
<td>None</td>
</tr>
<tr>
<td>Cytokeratin</td>
<td>Labels the most of the cytokeratins of the cytoskeleton in normal epithelia and epithelial carcinomas; some abnormal myofibroblasts, and normal smooth muscle cells</td>
<td>DAKO</td>
<td>1:150</td>
<td>Protease</td>
</tr>
<tr>
<td>AE1/AE3</td>
<td>Forkhead-winged helix transcription factor that defines the regulatory T cells</td>
<td>Abcam</td>
<td>1:100</td>
<td>CC1 30</td>
</tr>
<tr>
<td>IL-17</td>
<td>One member of a highly inflammatory cytokine family (IL-17α-δ) with chemotactic properties that binds with receptors on most cell types</td>
<td>Abcam</td>
<td>1:200</td>
<td>CC1 30</td>
</tr>
<tr>
<td>ROR-α</td>
<td>Retinoic acid-related orphan receptor alpha, (NR1F1, a thyroid hormone-like receptor), a transcription factor expressed in the epithelium of many tissues. Required for lymphocyte development. A receptor for cholesterol and its derivatives</td>
<td>Abcam</td>
<td>1:100</td>
<td>CC1 30</td>
</tr>
<tr>
<td>ROR-β</td>
<td>Retinoic acid-related orphan receptor-β (NR1F2), present in the brain and retina</td>
<td>Abcam</td>
<td>1:200</td>
<td>CC1 30</td>
</tr>
<tr>
<td>ROR-γ</td>
<td>Retinoic acid-related orphan receptor gamma (NR1F3), required for the lymphoid tissue development</td>
<td>Abcam</td>
<td>1:200</td>
<td>CC1 30</td>
</tr>
<tr>
<td>S100</td>
<td>A family of intracellular and secreted calcium-binding proteins</td>
<td>Ventana</td>
<td>Ready to use</td>
<td>CC1 30</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Part of the TNF superfamily</td>
<td>Abcam</td>
<td>1:100</td>
<td>Protease</td>
</tr>
</tbody>
</table>

Note: CC1 30 indicates tissue culture conditions.
The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

Gerard J Nuovo¹, James S Hagood², Cynthia M Magro³, Nena Chin⁴, Rubina Kapil⁵, Luke Davis⁶, Clay B Marsh⁵ and Virginia A Folicke⁵

¹Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA; ²Pediatric Respiratory Medicine, University of California-San Diego, and Rady Children’s Hospital of San Diego, CA, USA; ³Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University/New York Presbyterian Hospital, New York, NY, USA; ⁴Accurate Diagnostic Labs, South Plainfield, NJ, USA; ⁵Department of Internal Medicine, Ohio State University Medical Center, Columbus, OH, USA and ⁶Department of Periodontology, College of Dentistry, Ohio State University Medical Center, Columbus, OH, USA

Funded by R21HL093675 (VAF) from the National Heart, Lung, and Blood Institute of the National Institutes of Health.
H&E stain plus antibodies with different labels.

Fluorescent image of same slide

CD3:
T-cells

IL-17:
Cytokine (signal) produced by a subset of T-cells (?)

CD68:
Macrophages

IL-17:
Cytokine (signal) produced by a subset of macrophages
Cyto. AE1/3: Cytoskeletal proteins of epithelia

CCR6 (left): Cytokine receptor highly expressed by Th-17s

Cyto. AE1/3: Cytoskeletal proteins of epithelia

IL-17: Cytokine (signal) produced by Th-17s

a. H&E stain plus antibodies
More questions...

Why are the distinctively abnormal type-II epithelial cells (in the IPF cases) expressing molecules that we don’t normally associate with type-II epithelial cells?

In particular, why are they expressing IL-17, a T-lymphocyte cytokine?
What do we know about IL-17?

• IL-17 (originally called CTLA-8) was cloned from an activated T-lymphocyte cell line, (Rouvier, et al., 1993) and was noted to have homology to a Herpesvirus saimiri gene. (BTW, H. saimiri is a monkey virus.)

• Yao, et al. (1995) also studied this new cytokine in Herpesvirus saimiri, and named it IL-17.

• ~10 years ago, IL-17 was characterized as the cytokine for fighting bacterial, yeast, and parasitic infections. It has also been found to play a role in every autoimmune disease that has been probed for its presence to date.

• Almost all cells have receptors for the various forms of IL-17.

So what happened next?
Saimiri sciureus
Luckily, I have a collaborator that is willing to test my wild ideas.

Thank you, Dr. Gerard J. Nuovo
IPF Lung, abnormal epithelial type II cells

Blue: Herpesvirus saimiri

Red: IL-17

Yellow: Colocalization
Idiopathic pulmonary fibrosis is strongly associated with productive infection by herpesvirus saimiri

Virginia A Folcik¹,²,³, Michela Garofalo⁴, Jack Coleman⁵, James J Donegan⁵, Elazar Rabbani⁵, Saul Suster⁶, Allison Nuovo⁷, Cynthia M Magro⁸, Gianpiero Di Leva⁴ and Gerard J Nuovo⁴,⁹

¹The Ohio State University (OSU) at Marion, Marion, OH, USA; ²OSU Computer Science and Engineering, Marion, OH, USA; ³OSU Innovation Group for the Study of Complexity in Human, Natural, and Engineered Systems, Marion, OH, USA; ⁴Satellite Laboratory, Ohio State Univ Comprehensive Cancer Center, Powell, Columbus, OH, USA; ⁵Enzo Biochem, Farmingdale, NY, USA; ⁶Medical College of Wisconsin, Milwaukee, WI, USA; ⁷OSU Wexner Medical Center, Columbus, OH, USA; ⁸Weill Cornell Medical Center, New York, NY, USA and ⁹Phylogeny Inc, Powell, OH, USA
Squirrel monkeys

Cotton Top Tamarins

Common Marmosets

Owl or Night monkeys
Conclusions:

• Agent-based modeling directs the thought process for solving a problem. It is done incrementally, with the potential for insight at any stage. (North and Macal, 2007)

• Creation of a model requires going back to the laboratory at times to fill in the blanks in the knowledge base for the model.

• Agent-based modeling can lead an investigator to the questions that need to be asked, and in this way, help find the answer to the problem.