exams.sty Manual

Version [2016/05/01]

Laurence R. Taylor

May 2015
Contents

1 Introduction
1.1 Getting started Lo

2 Writing the problems
2.1 Additional problem related environments
2.2 Before and after in the pdffile

3 What happens when the file is TEpXed

4 Versions of the exam

4.1 The optional argument to the exam environment
4.1.1 Thevopiece e
4.1.2 The cpiece e
4.1.3 The s piece
4.1.4 Default behavior for the optional argument

4.2 Theversion file
4.2.1 AnswerDatafields. o
4.2.1.1 AnswerData.Perm lines

4.2.1.2 AnswerData.perLine lines

4.2.1.3 AnswerData.Marks & skip lines

4.2.2 ProblemData field 0oL

4.3 Fine tuning the version file oo oo
4.3.1 Permuting answerso
4.3.2 Choosing, spacing and permuting problems

5 Cover pages

5.1 Values e
5.2 \ifmarkedAnswerSheet
5.3 \isPartialCredit#1, \PartialCredittrue and \PartialCreditfalse

5.4 \multipleChoiceLine#1#2
5.5 \partialCreditItem#1 and \markedPartialCreditItem#l
5.6 Additional cover page informationo
5.7 Cover page caveats

6 Fine tuning the appearance of the marks.

(934

7 Additional commands 14
7.1 Forloops. o 14

A Dependencies 14

1 Introduction

This is the manual for the [2016/05/01] version of my test macros. It supersedes the
[2014/09/19] and [2013/03/01] versions although exams written with either version should
still TEX with minor modifications. This package is updated periodically so if you archive
an exam, please archive the exams.sty file you used.

This package allows you to construct exams, quizzes, worksheets, etc. and then print
several versions with permuted answers and/or permuted problems. It is designed to sepa-
rate, as much as possible, the task of making up problems with the task of assembling your
problems into one or more exams.

Feel free to change any default behavior you find objectionable but please change the
\ProvidesClass so your exams.sty are not confused with mine.

1.1 Getting started

Here is a typical file at the start of making up an exam.

\documentclass[12pt]{amsart}
\usepackage{exams}

\begin{document}
\begin{exam}

\end{exam}
\end{document}

You may have additional packages and macros as with any IXTEX file, but the above six
lines of code are all you need to get started.

If other people are helping you write the exam and they do not have and do not
want a copy of exams.sty, included in the usual distribution for this package is a file
exam_short.tex. They can write their problems using a copy this file and you can copy
and paste their code into one exam file.

2 Writing the problems

The first step in writing an exam is to produce the problems, and if there are multiple choice
problems, the answers. The exams.sty code has been written so as to make this step as
simple as possible.

Each problem is contained in a problem environment,

\begin{problem} ... \end{problem}.

Just write the TEX code for the problem. When you TEX the file the problems will appear
numbered in the same order in which they appear in the file. If the problem is a partial
credit problem (the student is expected to write out a solution), this is all you need to do.

However, inside the problem-environment you may write a solution:
\begin{solution} ... \end{solution}.
It is highly recommended that you write solutions but it is not required. You may also write
solutions to some problems but not others.
If the problem is a multiple-choice problem, you will need a list of answers inside the
problem environment. The syntax is:
\begin{answers} ... \end{answers}
End the code for each answer with a \\. You may have as many or as few answers as you
like and the number of answers for each problem can be different. Two answers seems like
the minimum for a real multiple choice problem but if you just want to write the correct
answer, continue writing problems and come back at the end to put in wrong answers, you
can do this. Answers will be permuted later (see §4).

The correct answer must always be the first one in the list.

2.1 Additional problem related environments

There are two other environments available but seldom used. They are

\begin{before problem} ... \end{before problem}
\begin{after problem} ... \end{after problem}

and as the names imply they put material immediately before a problem or immediately
after. They are needed because anything between \begin{exam} and \end{exam} which is
not inside an environment ends up on the first page by itself and this is never what you
want.

The after problem environment is used if it is necessary to have something after the
answers is a multiple choice problem.

The after problem environment is never necessary if there is no answers environment
since its contents can be appended to the problem environment to achieve the same output.
You can if you wish still use it.

Here is a display of all the environments associated to a single problem.

\begin{problem}
\begin{before problem}

\end{before problem}

PROBLEM TeX CODE
\begin{answers}
AN
BN

S\
\end{answers}
\begin{solution}

\end{solution}
\begin{after problem}

\end{after problem}
\end{problem}

All environments are optional except for the outer problem one. The order of the pieces is
irrelevant. In principal you can put problem TEX code anywhere in the problem environment
outside of the other environments. There seems to be little reason not to put it before any
answer or solution environments. If you prefer, the solution environment can come before
the answers.

2.2 Before and after in the pdf file

There are two environments related to before problem and after problem.

\begin{before pdf problem}{#1} ... \end{before pdf problem}

\begin{after pdf problem}{#1} ... \end{after pdf problem}

These also put material before and after a problem but the #1 is the problem number in
the pdf file. If you permute problems as explained in 4.3.2 this material stays with the
number in the pdf file whereas the before and after problem material is permuted with
the problem. The problem number #1 is required and this material can be put anywhere in
the exam environment. If it turns out that there is no problem number #1 in the pdf file,
the corresponding material is ignored.

One common use for before pdf problem comes up in quizzes, worksheets or handouts
where a full blown cover page is unnecessary but a line or two giving the student a line
on which to write their name and/or a brief title or a date can be produced by using a
\begin{before pdf problem}{1} SOME TeX STUFF \end{before pdf problem}

It will put SOME TeX STUFF before the first problem in the pdf file.

3 What happens when the file is TEpXed

Here is a quick overview of what happens when you TEX the file. All the code before the
\begin{exam} is processed. Then the optional variable for \begin{exam} is collected and
the appropriate information is set. If the optional variable is not present some minimal
default information is used. Otherwise the information is collected from the appropriate
version file (as explained in 4).

Then the problems are read and put in \vbox’s for later. If there is an answers-
environment, the answers are collected and \vbox’ed. Ditto for any solution, before
problem, after problem, before pdf problemor after pdf problemenvironments. Only
when TEX arrives at the \end{exam} are the boxes processed and written to the pdf file.!
Since the environments are \vbox’ed, the TEX code in them is expanded when they are read
which is long before they are shipped out. Details of how the various boxes are arranged in
the final output are discussed beginning in the next section.

4 Versions of the exam

Once you have enough problems it is time to assemble them into an exam. The exam.sty
package is designed to make it easy to produce multiple versions from the same collection of
problems. Suppose for purposes of discussion that the exam file you have created is named
foo.tex.

When you were creating problems and TEXing the file you had no control over the for-
matting but by creating additional versions you can gain control over the output. Additional

! Except for anything not inside one of the above environments. This is written as it is processed and so
ends up on the first page by itself.

versions are numbered by positive integers. The actual pdf output file is controlled by the
optional argument to the exam environment and by an associated version file.

First you need to make a folder named versions
in the same directory as foo.tex.

Initially the output file, foo.pdf, has little spacing between the problems, always has
the first answer as the correct one and solutions are printed if you wrote them. You may
want to give the students solutions after the exam but this is not so desirable during the
exam itself. This default behavior, with a few exceptions, is difficult to change. To produce
better output, it is time to create versions.

You may use any positive integer you like for a version but to keep things simple, let us
start by producing version 1. Chance \begin{exam} to \begin{exam}[1]. When you TEX
foo.tex, the look of the output will be rather different. Each problem is on its own page
and answers are evenly spaced, three on the first line and two on the second. Problems and
answers appear in the same order in which they occurred in the foo.tex file. Solutions are
gone.

You certainly want to permute the multiple choice answers since otherwise all the correct
answers will be (a). You may also wish to permute the order of the problems or even not
use some of the problems in version 1. The spacing of the answers may need to be cleaned
up since it is entirely possible that answers will overlap as currently typeset. You may wish
to have more problems on a page.

All of this is fixed in the version file and by additional changes to the optional variable
in the exam environment.

4.1 The optional argument to the exam environment

The exam environment takes an optional argument, \begin{exam}[v.c.s],

4.1.1 The v piece

The value of v is the version number. It can be any non-negative integer and versions are
discussed in more detail in §4.2.

4.1.2 The c piece

The value of ¢ is explained in the cover page section (§5.2) and can be ignored for now.

4.1.3 The s piece

The value of s controls what is done with the solutions. If s=1 the solution is written
immediately after the problem. If s=2, all the solutions are written at the end of the file.
Any other value results in the solutions being ignored.

4.1.4 Default behavior for the optional argument

The default value for the optional exam argument is 0.0.1: v=0 for version 0 and s=1 which
writes the solution immediately after the problem. The value of ¢ is irrelevant in version 0.
If you do not want the solutions printed, \begin{exam} [0.0.0] removes them.

Missing entries in the exam argument are filled in with default values.

e [f v is not missing, then missing ¢ and v entries are set to 0.
For example, \begin{exam} [0.0.0] and \begin{exam} [0] are equivalent.

o [f the v entry is missing then c is always set to 0 and if s is missing, it is set to 1.
Hence \begin{exam}[...] , \begin{exam}[..], \begin{exam}[.], \begin{exam}[]
and \begin{exam}[0.0.1] are all equivalent.

4.2 The version file

If you look in the versions directory after you TEX foo.tex with v=1, there is now a file,
1.ver in the versions directory. (You can change this behavior as described below, but for
now let’s assume you have made a versions directory.) This is the version file for version 1.
When you change \begin{exam}[1] to \begin{exam}[2] and reTgX, there will be a new
file, 2.ver.

This is not the most efficient way to proceed. It is easier to fix up 1.ver some and then
Just copy and change the 1 to other numbers to get other version files.

There are two steps I like to do to version 1 before I copy to create the other version
file(s). To explain these, open 1.ver in the word processor you use to create foo.tex.
Strictly speaking you can use any word processor that will save the file as a plain text file
but the word processor you use to create foo.tex has this property.

The 1.ver file is readable but a bit strange. First there are lines pertaining to the
typesetting of answers.

4.2.1 AnswerData fields

If the are no multiple choice problems there will be no lines of the sort and you may skip to
4.2.2.

4.2.1.1 AnswerData.Perm lines First there will be some lines that look like
\namedArgs{#_tex.AnswerData}{{Perm}->{{1}{2}{3}{4}{5}}}

There is one of these lines for each multiple choice problem and #_tex is a number which
is the number of the problem in the foo.tex file. As we shall see, this may not be the
number of the problem in the foo.pdf file but #_tex always refers to the number of the
problem in the foo.tex file. For now you should ignore these lines except to note that in
this example, problem number #_tex has 5 answers. In general you should see a list of
consecutive integers from 1 to the number of answers for the problem.

4.2.1.2 AnswerData.perLine lines . Next come lines
\namedArgs{#_tex.AnswerData}{{perLine}->{3}}

These are the lines which set the answer spacing to 3 on a line in the above sample.
Change these numbers as desired to get better spacing of the answers. A
\namedArgs{#_tex.AnswerData}{{perLine}->{1}} puts one answer per line while a
\namedArgs{#_tex.AnswerData}{{perLine}->{5}} puts five.

More control is available if needed and this is a change from the [2014/09/01] version.
Suppose for illustrative purposes you have 5 answers. The first entry is always a number and
says how many columns you want. Then you can have a sequence of five pairs (1,1)(1,2)....
These are (row, column) positions where the answers will appear. Row-column pairs not on
your list will be blank spaces of the correct size to line up your answers. The pairs must be
lexicographically ordered so for equal rows the columns must increase and rows must either
be equal or increase. If the sequence is not lexicographical you will get an error message
listing both the number of the offending problem in the foo.pdf file and in the foo.tex
file. You need the number in the foo.tex file to know which AnswerData line to fix and the
number in the foo.pdf file is handy to go see how the problem is typesetting.

If you have no pairs then a default list is created for you. If you have 5 answers then
\namedArgs{#_tex.AnswerData}{{perLine}->{3}} becomes
\namedArgs{#_tex.AnswerData}{{perLine}->{3(1,1)(1,2)(1,3)(2,1)(2,2)}}

If you change it to
\namedArgs{#_tex.AnswerData}t{{perLine}->{3(1,1)(1,2)(1,3)(2,1)(2,3)}}

answers (a), (b) and (c) are spaced equally on the first line; (d) is at the start of the second
line, but (e) lines up under (c).

4.2.1.3 AnswerData.Marks & skip lines The next sort of lines look like

\namedArgs{#_tex.AnswerData}{{Marks}->{{a}{b}{cHd}{e}}I{skip}->{\vskip 10pt}}

The Marks-field are how the answers are to be labeled and you may change these to suit
yourself. Since there are 5 answers in our example, you need 5 marks although if there are
more the additional ones will just be ignored.

Notice in the argument for Marks only the a, b, ¢, etc. appear. The formatting for how
these marks appear in the exam and on the cover page is handled by three macros described

below in 5.5.
The skip-field is the amount of additional space between two lines of answers. Again
you may adjust this to suit yourself.

Then there is one type of line which occurs for each problem in the foo.tex file.

4.2.2 ProblemData field

There is one line of this sort for each problem.
\namedArgs{#_tex.ProblemData}{{pts}->{}}
Each problem in the foo.pdf file is labeled with a number and the contents of this field.
It is called pts because I use it to print the point value of the problem, but it can contain
any legal TEX code that can be evaluated when the problem is read.

There are some additional lines which you should ignore for now. When each problem in
versiton 1 looks good when TEX’ed, copy the version 1 file and rename it for as many versions
as you need.

4.3 Fine tuning the version file

Each version file now has to be handled separately.

4.3.1 Permuting answers

The first step is to permute the answers. Assume by way of example that problem # tex
has 5 answers. The default value of the AnswerData.Perm line is
\namedArgs{#_tex.AnswerData}{{Perm}->{{1}{2}{3}{4}{5}}}
Changing this line to
\namedArgs{#_tex.AnswerData}{{Perm}->{{3}{5}{4}{1}{2}}}
has the following effect. The first answer in the foo.tex file for problem #_tex is the third
answer in the foo.pdf file. The second answer in the foo.tex file is the fifth answer in
the foo.pdf file. The third answer in the foo.tex file is the fourth answer in the foo.pdf
file. The fourth answer in the foo.tex file is the first answer in the foo.pdf file. The fifth
answer in the foo.tex file is the second answer in the foo.pdf file.
It is not difficult to write a script that will produce these lines with random permutations.
You should now reTEX the file to insure that the spacing for the answers is still good. If
all the answers are roughly the same size there will be no problem but if the sizes are rather
different, altering the printed order may spoil the spacing. If needed you can either change
the spacing using
\namedArgs{#_tex.AnswerData}{{perLine}->{7}}
change the permutation by hand or use one of the more advanced perLine options discussed
in 4.2.1.2.

4.3.2 Choosing, spacing and permuting problems

Once your answers are permuted satisfactorily it is time to consider the

\namedArgs{#_pdf .PermutedProblemData}{{fileProblem}->{#_tex}{spaceAfter}->{\vfill \eject }}

lines. By default #_pdf = #_tex but #_pdf is the number of the problem in the foo.pdf file.
Hence the PermutedProblemData lines should start with #_ pdf = 1, followed by #_pdf = 2,
pdf = 3, and so on until you have the number of problems you want in the foo.pdf file.
You may use any subset of the problems in the foo.tex file you want and you may change
them with each version. If you leave the fileProblem-fields with their default values all the
problems will be printed in the same order as they occur in the foo.tex file.

You need one pdf .PermutedProblemData-line
for each problem you want on the printed exam,
numbered consecutively starting with 1.

You do not have to use all the problems in the foo.tex file.

The spaceAfter field adds a spacing command after the problem. The \vfill\eject
produces a new page. A command of just \vfill will put the next problem on the same
page and divide the vertical space evenly. You could use \vskip 80pt to force an 80 pt
space after the problem and let TEX do the rest.

5 Cover pages

Cover pages can be added to the front of the foo.pdf file if desired.

First you need to make a folder named front page
in the same directory as foo.tex.

If there is a front_page/cover.v.page file in this folder and if the version is v, then a
cover page is added for this version. If there is a front_page/cover.page file in this folder
but not a front_page/cover.v.page file then this file is used to create the cover page(s).

Precisely, when running version v, the program looks first for a front_page/cover.v.page
file and if it is present, it is used for the cover page. If there is no such file, then, if the file

10

front_page/cover.page is present, it is used. If neither file is present, then no cover pages
are added, even if requested.

There are two kinds of cover pages. One can be used as a cover page for the actual exam.
A second sort looks like the first unless there are multiple choice questions. In this case
the correct answer for each multiple choice question is marked so it can be used to prepare
templates for grading the exam.

The cover page is responsible for printing itself.

All the foo.tex file does is load the requested cover page file which is then responsible
for producing the desired output. With a bit of work you can produce any sort of cover page
you may need.

There are some values and commands available to the cover page file:
e Values: (as macros not counters)

— \finalNumberOfPages (the number of pages in the exam)
— \finalNumberOfProblems (the number of problems in the foo.pdf file)
— \number0fProblemsInFile (the number of problems in the foo.tex file)

e Commands:

— \ifmarkedAnswerSheet

— \isPartialCredit#1, \PartialCredittrue and \PartialCreditfalse

— \multipleChoiceLine#1#2 \partialCreditItem#l and \markedPartialCreditItem#1
— \partialCreditItem#1 and

— \markedPartialCreditItem#1

5.1 Values

There is a small caveat when using \finalNumberOfPages. It is possible that different
versions may have different numbers of pages but by the time the exam is TEX’ed the cover
page is long gone. This can also happen if you TEX once with solutions and then without
them (or vice versa).

To solve this problem, the number for the previous run is stored in the foo.aux file and
since the cover page is written before the exam proper, the number passed to the cover page
code is the number from the previous run. (If the current version was not TEX’ed last, the
value is a blank.) If you use \finalNumberOfPages in your cover page code you must TEX
the file twice whenever you change anything that affects the number of pages to be sure this
number is set correctly.

11

5.2 \ifmarkedAnswerSheet

\ifmarkedAnswerSheet is a TgXK-if which is true if the cover sheet should be marked and
false otherwise. To set it you use the ¢ piece from the argument to \begin{exam}[v.c.s].
If c=1 an unmarked sheet is produced but if c=2 a marked sheet is produced: c=2 is useful
if you want to hand out a copy of the exam with the correct answers marked on the cover
page.

More useful is ¢=21 which produces two pages at the start of foo.pdf. The first is
marked and the second is unmarked. It is expected that the marked version will be removed
and used to construct templates for grading the exam and the exam itself will consist of the
unmarked cover sheet and the problems.

The \finalNumberOfPages in this version is the number of pages in the foo.pdf file if ¢
is not 21, but if ¢ = 21 it is the number of pages after the marked answer page is removed.
In other words, it is the number of pages in the exam as passed out to the students.

5.3 \isPartialCredit#1, \PartialCredittrue and \PartialCreditfalse

The command \isPartialCredit#1 behaves like a TgX-if. The argument is the number of
a problem in the foo.pdf file. Usage is

\isPartialCredit{#_pdf} PC \else MC \fi

If the problem number #_pdf is a partial credit problem, the PC code is executed but if it
is a multiple choice problem the MC code is executed. The PartialCredit flag is set to
\PartialCredittrue or \PartialCreditfalse as appropriate. This value is retained until
the next \isPartialCredit#1 is executed.

5.4 \multipleChoiceLine#1#2

#1 is the number of the problem in the foo.pdf file and #2 is a width. What is returned
is the array of Marks for that problem, evenly spaced across the width and formatted as
described next.

5.5 \partialCreditItem#l and \markedPartialCreditItem#1

#1 is the mark to be formatted. The default is (#1) unless we are doing a marked answer
sheet and this is the correct answer. Then the default is (). You are free to redefine either
of these commands to produce a different looking cover page.

The formatting of the mark next to the answer in the actual exam is handled by
\lineMark#1. The variable #1 contains the mark from 4.2.1.3. The default is (#1).

12

5.6 Additional cover page information

If you need the version number in your TEX code for the cover page, you can get it with
\value{VERSION}.

For example \ifmarkedAnswerSheet{Version \#\number\value{VERSION}}{} will print
the version number on the marked answer sheet.

You can alter the appearance of the cover page for different versions either by using
\value{VERSION} and TEX macros to get different output for different versions or make a
cover.v.page for each version.

5.7 Cover page caveats

Because the cover page code is loaded after the preamble any packages needed by it must
be loaded in the preamble for foo.tex. Since it may be loaded twice (if ¢=21) it should
not do any \new’s either. Any \newcommand’s or \newcounter’s or such need to be in the
foo.tex file. \def’s are allowed since IXTEX does not object to a \def which has already
been defined.

Another point to remember is that the cover page is responsible for ending itself so except
in rare cases it needs to end with a \newpage.

Any headers/footers you want in the exam need to be defined after the \newpage for the
cover page. If you try to put then in the foo.tex file they will also be used for the cover
page. You could set the headers/footers in the cover page code, as the supplied examples do,
but then these values will be used in the rest of the file. The supplied cover page examples
use fancyhdr for both the cover pages and to set the headers/footers for the exam. Hence to
use the supplied examples of cover pages you will need to have a \usepackage{fancyhdr}
in the preamble of the foo.tex file.

6 Fine tuning the appearance of the marks.

Any problem which has answers has an associated list of marks from the
\namedArgs{#_tex.AnswerData}{{Marks}->{{a}{b}{ct{d}{e}} {skip}->{7}}

line in the version file. When the answers for this problem are written in the foo.pdf-file,
each answer is preceded by one of these marks, in order. The first answer on the page uses
the first mark in the list and so on. You are free to use any labels you like.

A default line is prepared when you first do a run with a new version number. It just takes
its values from \defaultMarks defined by \gdef\defaultMarks{abcdefghi}. If you rou-
tinely use a different collection of marks you can change the \defaultMarks in the exam.sty
file.

Recall (here) that the mark next to the problem is formatted by \linkMark#1.

13

7 Additional commands

7.1 For loops

For-loops can be useful in writing cover pages and since they are used in the exam.sty code
they have been made available to you. The syntax is
\forloop[5]

so there is one optional argument and 4 non-optional ones. The optional argument is the step
counter for the loop and is 1 by default. The second argument (which is the first non-option
one) is the start value for the counter. The next argument is the end value and the next is
the name of the counter to be used for the loop. The last argument is the code for the loop.
Since KTEX counters are global, you must be careful that none of the code for the loop does
things to your counter in unexpected ways.

By way of example, here is a bit of code which prints the multiple choice lines to be
marked on the cover page.

\newcounter{tmpLRTC}
\forloop{1}{\number\finalNumberO0fProblems}{tmpLRTC}{%
\isPartialCredit{\value{tmpCounterl}}%

\else’

\multipleChoiceLine{\value{tmpLRTC}}{6in}%

\par’

\fi%

}

You can find additional examples in the included sample cover pages.

A Dependencies

exams . sty requires the following packages:
e ctoolbox
e geometry.sty

A Google search will find a location from which you may download any package you may
need. geometry.sty could be removed with a little recoding but etoolbox is pretty deeply
embedded.

These packages are included in most standard TEX distributions so probably exams.sty
will work “out of the box”.

14

	Introduction
	Getting started

	Writing the problems
	Additional problem related environments
	Before and after in the pdf file

	What happens when the file is TeXed
	Versions of the exam
	The optional argument to the exam environment
	The v piece
	The c piece
	The s piece
	Default behavior for the optional argument

	The version file
	AnswerData fields
	AnswerData.Perm lines
	AnswerData.perLine lines
	AnswerData.Marks & skip lines

	ProblemData field

	Fine tuning the version file
	Permuting answers
	Choosing, spacing and permuting problems

	Cover pages
	Values
	
	
	
	"026E30F partialCreditItem#1 and "026E30F markedPartialCreditItem#1
	Additional cover page information
	Cover page caveats

	Fine tuning the appearance of the marks.
	Additional commands
	For loops

	Dependencies

