Problems for today

Find the plane containing $\langle 1, 1, 2 \rangle$, $\langle 3, 0, 1 \rangle$, and $\langle 2, 1, 0 \rangle$.

Find the plane containing $\langle 1, 1, 2 \rangle$, $\langle 3, 0, 1 \rangle$, and $\langle 2, 1, 0 \rangle$. Two vectors in the plane:

$$\vec{v}_1 = \langle 3, 0, 1 \rangle - \langle 1, 1, 2 \rangle = \langle 2, -1, -1 \rangle$$
 and

$$\vec{v}_2 = \langle 3, 0, 1 \rangle - \langle 2, 1, 0 \rangle = \langle 1, -1, 1 \rangle$$
$$\vec{v}_1 \times \vec{v}_2 = \langle -2, -(3), -1 \rangle = \langle -2, -3, -1 \rangle.$$

The normal vector can be any multiple of $\langle -2, -3, -1 \rangle$ so let $\vec{n} = \langle 2, 3, 1 \rangle$.

An equation for the plane is

$$\langle 2, 3, 1 \rangle \cdot \langle x, y, z \rangle = \langle 2, 3, 1 \rangle \cdot \langle 1, 1, 2 \rangle = 7.$$

Equivalently

$$2x + 3y + z = 7$$

Find the point on all three planes $x+y-z=6,\,2x-y-5z=6$ and x+2y+7z=1

Find the point on all three planes

$$x + y - z = 6$$
, $2x - y - 5z = 6$ and $x + 2y + 7z = 1$

x = 6 - y + z from first so plugging into second:

$$2(6 - y + z) - y - 5z = 6, 12 - 3y - 3z = 6, 3y + 3z = 6,$$
$$y + z = 2.$$

Hence
$$y = 2 - z$$
 so $x = 6 - (2 - z) + z = 4 + 2z$.

Plugging into third:

$$(4+2z) + 2(2-z) + 7z = 1, 8 + 7z = 1, z = -1, y = 3,$$

$$x = 2.$$
 (2, 3, -1).

Find an equation of the line which is the intersection of 2x - y + 5z = 10 and 3x + y - 7z = 10.

Find an equation of the line which is the intersection of 2x - y + 5z = 10 and 3x + y - 7z = 10.

A vector \vec{v} lies in a plane with normal vector \vec{n} if and only of \vec{v} and \vec{n} are orthogonal.

If the line has equation $\vec{r} = \vec{p} + \vec{m}t$ then \vec{m} is orthogonal to the two normal vectors and hence we may use any non-zero multiple of

$$2 - 1 5$$

 \times

$$3 \ 1 \ -7$$

$$\langle 2, -(-29), 5 \rangle$$
 so take $\vec{m} = \langle 2, 29, 5 \rangle$.

To find a point solve 2x - y + 5z = 10 and 3x + y - 7z = 6.

$$x = \frac{10 + y - 5z}{2}$$
 so

$$3\left(\frac{10+y-5z}{2}\right)+y-7z = 10, 30+3y-15z+2y-14z = 20,$$

$$10+5y-29z = 0.$$

One solution is y = -2, z = 0 and therefore

$$x = \frac{10 + (-2) + 0}{2} = 4 \text{ or } \vec{p} = \langle 4, -2, 0 \rangle \text{ and }$$
 $|\vec{r} = \langle 4, -2, 0 \rangle + \langle 2, 29, 5 \rangle t.|$

Find the plane containing

$$\vec{r}_1 = \langle 1, 3, 5 \rangle + \langle 1, 1, 1 \rangle t$$
 and $\vec{r}_2 = \langle 5, 7, 9 \rangle + \langle 1, -1, 1 \rangle t$

Find the plane containing

$$\vec{r}_1 = \langle 1, 3, 5 \rangle + \langle 1, 1, 1 \rangle t$$
 and

$$\vec{r}_2 = \langle 5, 7, 9 \rangle + \langle 1, -1, 1 \rangle t$$

The line $\vec{r} = \vec{p} + \vec{m}t$ lies in the plane $\vec{n} \cdot \langle x, y, z \rangle = d$ if and only if $\vec{n} \cdot \vec{m} = 0$ and $\vec{n} \cdot \vec{p} = d$.

 $\langle 1,1,1\rangle \times \langle 1,-1,1\rangle = \langle 2,0,-2\rangle$ so if our plane exists it has $\vec{n}=\langle 1,0,-1\rangle$ for a normal vector.

If the first line lies in the plane $\vec{n} \cdot \langle x, y, z \rangle = d$, $d = \langle 1, 0, -1 \rangle \cdot \langle 1, 3, 5 \rangle = -4$.

Since $\langle 1, 0, -1 \rangle \cdot \langle 5, 7, 9 \rangle = -4$ both lines lie in $\overline{\langle 1, 0, -1 \rangle \cdot \langle x, y, z \rangle} = -4$.

Are $\vec{r}_1 = \langle 1, 4, 5 \rangle + \langle 1, 1, 1 \rangle t$ and $\vec{r}_2 = \langle 5, -7, 9 \rangle + \langle 1, -1, 1 \rangle t$ skew?

Are
$$\vec{r_1} = \langle 1, 4, 5 \rangle + \langle 1, 1, 1 \rangle t$$
 and

$$\vec{r}_2 = \langle 5, -7, 9 \rangle + \langle 1, -1, 1 \rangle t$$
 skew?

Need to solve
$$\langle 1, 4, 5 \rangle + \langle 1, 1, 1 \rangle t = \langle 5, -7, 9 \rangle + \langle 1, -1, 1 \rangle s$$
.

Take cross product of both sides with $\langle 1, 1, 1 \rangle$ and remember $\vec{m} \times \vec{m} = \vec{0}$:

$$\langle 1, 1, 1 \rangle \times \langle 1, 4, 5 \rangle = \langle 1, 1, 1 \rangle \times \langle 5, -7, 9 \rangle + \langle 1, 1, 1 \rangle \times \langle 1, -1, 1 \rangle s.$$

$$\langle 1, -4, 3 \rangle = \langle 16, -4, -12 \rangle + \langle 2, 0, -2 \rangle s$$

$$\langle -15, 0, 15 \rangle = \langle 2, 0, -2 \rangle s; s = -15/2.$$

If they intersect, they intersect at $\langle 5, -7, 9 \rangle + \langle 1, -1, 1 \rangle (-15/2) =$

$$\frac{1}{2} \Big(\langle 10, -14, 18 \rangle + \langle -15, 15, -15 \rangle \Big) = \frac{1}{2} \Big(\langle -5, 1, 3 \rangle \Big).$$

Solve
$$\langle 1, 4, 5 \rangle + \langle 1, 1, 1 \rangle t = \frac{1}{2} \left(\langle -5, 1, 3 \rangle \right)$$
 or

$$\langle 1, 1, 1 \rangle t = \frac{1}{2} \left(\langle -5, 1, 3 \rangle \right) - \frac{1}{2} \left(\langle 2, 8, 10 \rangle \right) = \frac{1}{2} \langle -7, 7, -7 \rangle$$

so $t = -\frac{7}{2}$. Hence the lines intersect.

Are $\vec{r}_1 = \langle 2, 4, 5 \rangle + \langle 1, 1, 1 \rangle t$ and

$$\vec{r}_2 = \langle 5, -7, 9 \rangle + \langle 1, -1, 1 \rangle t$$
 skew?

Need to solve $\langle 2, 4, 5 \rangle + \langle 1, 1, 1 \rangle t = \langle 5, -7, 9 \rangle + \langle 1, -1, 1 \rangle s$.

Take cross product of both sides with $\langle 1, 1, 1 \rangle$ and remember $\vec{m} \times \vec{m} = \vec{0}$:

$$\langle 1, 1, 1 \rangle \times \langle 2, 4, 5 \rangle = \langle 1, 1, 1 \rangle \times \langle 5, -7, 9 \rangle + \langle 1, 1, 1 \rangle \times \langle 1, -1, 1 \rangle s.$$

$$\langle 1, -3, 2 \rangle = \langle 16, -4, -12 \rangle + \langle 2, 0, -2 \rangle s$$

 $\langle -15, -7, 14 \rangle = \langle 2, 0, -2 \rangle s$; no solution. Hence the lines are skew.

If they had been parallel, $\langle 1, 1, 1 \rangle \times \langle 1, -1, 1 \rangle$ would have been $\vec{0} = \langle 0, 0, 0 \rangle$.