
Goals for today

Arc length



Let ~rptq be a curve which is differentiable and whose deriva-

tive is continuous on some interval ra, bs. (It suffices for ~rptq

to be continuous and ~r 1ptq to be piecewise continuously dif-

ferentiable on ra, bs.)

Then
ż b

a

|~r 1ptq| dt

exists. But what is it measuring?



There is a value of ti in the ith interval so that |~r 1ptiq| is the

absolute value of the slope so |~r 1ptiq|∆i is the length of the

chord and approximates the length of the curve.

Hence
ż b

a

|~r 1ptq| dt

is the distance traveled by a particle moving along the curve
with parametrization ~rptq.



This will be the length of the curve as long as the particle

does not go over a part of the curve which has positive length

more than once.

Going around a circle twice BAD,
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OK.



The curve on the last slide is parametrized by

~rptq “
@

t2 ´ t, t3 ´ 3t´ 1
D

.
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Intersection point is p2, 1q which occurs when t “ ´1 and

t “ 2. The point on the curve at the lower right occurs at

t “ ´2 and the local min occurs when t “ 1.

~r 1ptq “
@

2t´ 1, 3t2 ´ 3
D

The length of the curve from t “ ´2 to t “ 3 is given by
ż 3

´2

a

p2t´ 1q2 ` p3t2 ´ 3q2 dt “

ż 3

´2

?
9t4 ´ 14t2 ´ 4t` 10 dt

which we would need to evaluate numerically.



Just as in 1st year calculus when you used the Fundamen-

tal theorem to define the log function, we can define the arc

length function for any parametrization which yields length

by

sptq “

ż t

a

|~r 1puq|du

An important formula is

dsptq

dt
“ |~r 1ptq| .

As long as |~r 1ptq| is piecewise positive, sptq has an inverse

function tpsq and

~Rpsq “ ~r
`

tpsq
˘

is an arc length parametrization of the curve.



Arc length can rarely be computed in practice but one can

always try.

~rptq “

B

t cosptq, t sinptq,
1

3
p2tq3{2

F

~r 1ptq “
A

`

´t sinptq ` cosptq
˘

,
`

t cosptq ` sinptq
˘

, p2tq1{2
E

|~r 1ptq| “

b

`

´t sinptq ` cosptq
˘2
`
`

t cosptq ` sinptq
˘2
`
`

p2tq1{2
˘2

|~r 1ptq| “
?
t2 ` 2t` 1 “ t` 1

sptq “

ż t

0

pu` 1qdu “ pu2{2` uq
ˇ

ˇ

ˇ

t

0
“ t2{2` t

The inverse function in this case is found as follows.

s “ t2{2 ` t, 2s “ t2 ` 2t, 2s ` 1 “ t2 ` 2t ` 1 “ pt ` 1q2,

t` 1 “ ˘
?

2s` 1

t “
?

2s` 1´ 1

since t should be positive.

~rpsq “
@

p
?

2s` 1´ 1q cosp
?

2s` 1´ 1q,

p
?

2s` 1´ 1q sinp
?

2s` 1´ 1q,

1

3

`

2p
?

2s` 1´ 1q
˘3{2

F



The first is ~T “
d~rpsq

ds
“

d~rptq

dt
ds

dt

.

and by one of earlier formulas

~T “
~r 1ptq

|~r 1ptq|
.

Hence ~T is the unit tangent vector to the curve at the point
and we can compute it.



Since ~T ‚ ~T “ 1, ~T ‚

d~T

ds
“ 0.

Our second vector in the Frenet-Serret frame is the normal

vector, the unit vector ~N so that
d~T

ds
“ κpsq~N for κpsq ě 0.

The function κpsq is called the curvature.



The third vector is the binormal, defined by ~B “ ~Tˆ ~N.

The three vectors are mutually orthogonal, have unit length,

and ~T - ~N - ~B gives the right hand rule.

There are more elaborate formula to do calculations but we

will not pursue them here.



~rptq “

xsinptq ´ 2 cosptq ` 1,´2 sinptq ´ 2 cosptq ` 2, 2 sinptq ´ cosptq ´ 5y

~r 1ptq “ xcosptq ` 2 sinptq,´2 cosptq ` 2 sinptq, 2 cosptq ` sinptqy

|~r 1ptq| “
b

`

cosptq ` 2 sinptq
˘2
`
`

´2 cosptq ` 2 sinptq
˘2
`
`

2 cosptq ` sinptq
˘2

|~r 1ptq| “ 3

Hence

~Tptq “
1

3
xcosptq ` 2 sinptq,´2 cosptq ` 2 sinptq, 2 cosptq ` sinptqy.

d ~Tptq

ds
“

d ~Tptq

dt
ds

dt

“

1{3 x´ sinptq ` 2 cosptq, 2 sinptq ` 2 cosptq,´2 sinptq ` cosptqy
1

3

“

x´ sinptq ` 2 cosptq, 2 sinptq ` 2 cosptq,´2 sinptq ` cosptqy



~rptq “

xsinptq ´ 2 cosptq ` 1,´2 sinptq ´ 2 cosptq ` 2, 2 sinptq ´ cosptq ´ 5y

~Tptq “
1

3
xcosptq ` 2 sinptq,´2 cosptq ` 2 sinptq, 2 cosptq ` sinptqy

d ~Tptq

ds
“ x´ sinptq ` 2 cosptq, 2 sinptq ` 2 cosptq,´2 sinptq ` cosptqy

ˇ

ˇ

ˇ

ˇ

ˇ

d ~Tptq

ds

ˇ

ˇ

ˇ

ˇ

ˇ

“ 3

so the curvature is constant and is 3.

~Nptq “
1

3
x´ sinptq ` 2 cosptq, 2 sinptq ` 2 cosptq,´2 sinptq ` cosptqy



xcosptq ` 2 sinptq,´2 cosptq ` 2 sinptq, 2 cosptq ` sinptqyˆ

x´ sinptq ` 2 cosptq, 2 sinptq ` 2 cosptq,´2 sinptq ` cosptqy “

xA,B,Cy

A “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´2 cosptq ` 2 sinptq 2 cosptq ` sinptq

2 sinptq ` 2 cosptq ´2 sinptq ` cosptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´6

B “ ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cosptq ` 2 sinptq 2 cosptq ` sinptq

´ sinptq ` 2 cosptq ´2 sinptq ` cosptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 3

C “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cosptq ` 2 sinptq ´2 cosptq ` 2 sinptq

´ sinptq ` 2 cosptq 2 sinptq ` 2 cosptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 6

Hence

~Bptq “
1

9
x´6, 3, 6y “

1

3
x´2, 1, 2y



Normal Plane: This plane is perpendicular to ~r. It is deter-

mined by ~N and ~B: ~T is a normal vector for the plane.

Osculating Plane: This plane best captures the motion of the

curve. It is determined by ~T and ~N: ~B is a normal vector for

the plane.

Rectifying Plane: This plane determined by ~T and ~B: ~N is a

normal vector for the plane. We won’t bother with this one.



The binormal is constant if and only if the curve lies in the

Osculating Plane.

Hence the curve

~rptq “

xsinptq ´ 2 cosptq ` 1,´2 sinptq ´ 2 cosptq ` 2, 2 sinptq ´ cosptq ´ 5y

is planar, that is, it lies in the plane

x´2, 1, 2y ‚ xx, y, xy “ x´2, 1, 2y ‚ x´1, 0,´6y “ ´10



Arc length formula

sptq “

ż t

a

a

|~r 1puq|du .

Derivative of arc length

dsptq

dt
“ |~r 1ptq| .

Unit tangent vector

~T “
d~rpsq

ds
“

~r 1ptq

|~r 1ptq|
.

Unit normal vector and curvature.

d~T

ds
“ κpsq~N .

d~T

ds
“

d~T

dt
|~r 1ptq|

.

Unit binormal vector

~B “ ~Tˆ ~N

Normal plane at t0: normal vector ~Tpt0q, point ~rpt0q.

Osculating plane at t0: normal vector ~Bpt0q, point ~rpt0q.


