Goals for today

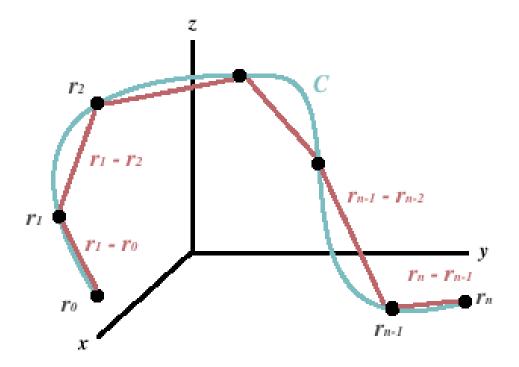
Arc length

Let $\vec{r}(t)$ be a curve which is differentiable and whose derivative is continuous on some interval [a, b]. (It suffices for $\vec{r}(t)$ to be continuous and $\vec{r}'(t)$ to be piecewise continuously differentiable on [a, b].)

Then

$$\int_{a}^{b} |\vec{r}'(t)| \, dt$$

exists. But what is it measuring?



The sum of the lengths of the vectors ri - ti-i approximate the length of C.

There is a value of t_i in the i^{th} interval so that $|\vec{r}'(t_i)|$ is the absolute value of the slope so $|\vec{r}'(t_i)|\Delta_i$ is the length of the chord and approximates the length of the curve.

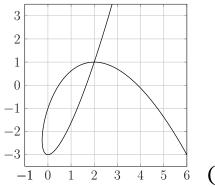
Hence

$$\int_{a}^{b} |\vec{r}'(t)| \, dt$$

is the distance traveled by a particle moving along the curve with parametrization $\vec{r}(t)$.

This will be the length of the curve as long as the particle does not go over a part of the curve which has positive length more than once.

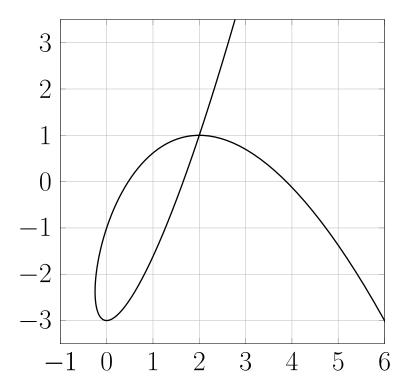
Going around a circle twice BAD,



OK.

The curve on the last slide is parametrized by

$$\vec{r}(t) = \left\langle t^2 - t, t^3 - 3t - 1 \right\rangle.$$



Intersection point is (2,1) which occurs when t=-1 and t=2. The point on the curve at the lower right occurs at t=-2 and the local min occurs when t=1.

$$\vec{r}'(t) = \langle 2t - 1, 3t^2 - 3 \rangle$$

The length of the curve from t = -2 to t = 3 is given by

$$\int_{-2}^{3} \sqrt{(2t-1)^2 + (3t^2-3)^2} dt = \int_{-2}^{3} \sqrt{9t^4 - 14t^2 - 4t + 10} dt$$

which we would need to evaluate numerically.

Just as in 1st year calculus when you used the Fundamental theorem to define the log function, we can define the *arc* length function for any parametrization which yields length by

$$s(t) = \int_{a}^{t} |\vec{r}'(u)| du$$

An important formula is

$$\frac{ds(t)}{dt} = |\vec{r}'(t)| .$$

As long as $|\vec{r}'(t)|$ is piecewise positive, s(t) has an inverse function t(s) and

$$\vec{R}(s) = \vec{r}(t(s))$$

is an arc length parametrization of the curve.

Arc length can rarely be computed in practice but one can always try.

$$\vec{r}(t) = \left\langle t \cos(t), t \sin(t), \frac{1}{3} (2t)^{3/2} \right\rangle$$

$$\vec{r}'(t) = \left\langle \left(-t \sin(t) + \cos(t) \right), \left(t \cos(t) + \sin(t) \right), (2t)^{1/2} \right\rangle$$

$$|\vec{r}'(t)| = \sqrt{\left(-t \sin(t) + \cos(t) \right)^2 + \left(t \cos(t) + \sin(t) \right)^2 + \left((2t)^{1/2} \right)^2}$$

$$|\vec{r}'(t)| = \sqrt{t^2 + 2t + 1} = t + 1$$

$$s(t) = \int_0^t (u+1)du = (u^2/2 + u)\Big|_0^t = t^2/2 + t$$

The inverse function in this case is found as follows.

$$s = t^2/2 + t$$
, $2s = t^2 + 2t$, $2s + 1 = t^2 + 2t + 1 = (t+1)^2$,
 $t + 1 = \pm \sqrt{2s + 1}$

$$t = \sqrt{2s+1} - 1$$

since t should be positive.

$$\vec{r}(s) = \left\langle (\sqrt{2s+1} - 1)\cos(\sqrt{2s+1} - 1), \right.$$
$$\left. (\sqrt{2s+1} - 1)\sin(\sqrt{2s+1} - 1), \right.$$
$$\left. \frac{1}{3} \left(2(\sqrt{2s+1} - 1) \right)^{3/2} \right\rangle$$

The first is
$$\vec{\mathbf{T}} = \frac{d\vec{r}(s)}{ds} = \frac{\frac{d\vec{r}(t)}{dt}}{\frac{ds}{dt}}$$
.

and by one of earlier formulas

$$\vec{\mathbf{T}} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}.$$

Hence $\vec{\mathbf{T}}$ is the unit tangent vector to the curve at the point and we can compute it.

Since $\vec{\mathbf{T}} \cdot \vec{\mathbf{T}} = 1$, $\vec{\mathbf{T}} \cdot \frac{d\vec{\mathbf{T}}}{ds} = 0$. Our second vector in the Frenet-Serret frame is the *normal vector*, the unit vector $\vec{\mathbf{N}}$ so that $\frac{d\vec{\mathbf{T}}}{ds} = \kappa(s)\vec{\mathbf{N}}$ for $\kappa(s) \ge 0$. The function $\kappa(s)$ is called the *curvature*.

The third vector is the binormal, defined by $\vec{\mathbf{B}} = \vec{\mathbf{T}} \times \vec{\mathbf{N}}$.

The three vectors are mutually orthogonal, have unit length, and $\vec{\mathbf{T}}$ - $\vec{\mathbf{N}}$ - $\vec{\mathbf{B}}$ gives the right hand rule.

There are more elaborate formula to do calculations but we will not pursue them here.

$$\vec{r}(t) =$$

$$\langle \sin(t) - 2\cos(t) + 1, -2\sin(t) - 2\cos(t) + 2, 2\sin(t) - \cos(t) - 5 \rangle$$

$$\vec{r}'(t) = \langle \cos(t) + 2\sin(t), -2\cos(t) + 2\sin(t), 2\cos(t) + \sin(t) \rangle$$

$$|\vec{r}'(t)| = \sqrt{(\cos(t) + 2\sin(t))^2 + (-2\cos(t) + 2\sin(t))^2 + (2\cos(t) + \sin(t))^2}$$

$$|\vec{r}'(t)| = 3$$

Hence

$$\mathbf{T}(t) = \frac{1}{3}\langle \cos(t) + 2\sin(t), -2\cos(t) + 2\sin(t), 2\cos(t) + \sin(t)\rangle.$$

$$\frac{d\mathbf{T}(t)}{ds} = \frac{\frac{d\mathbf{T}(t)}{dt}}{\frac{ds}{dt}} = \frac{1/3\langle -\sin(t) + 2\cos(t), 2\sin(t) + 2\cos(t), -2\sin(t) + \cos(t)\rangle}{\frac{1}{3}} = \frac{1}{3}$$

$$\langle -\sin(t) + 2\cos(t), 2\sin(t) + 2\cos(t), -2\sin(t) + \cos(t)\rangle$$

$$\vec{r}(t) =$$

$$\langle \sin(t) - 2\cos(t) + 1, -2\sin(t) - 2\cos(t) + 2, 2\sin(t) - \cos(t) - 5 \rangle$$

$$\mathbf{T}(t) = \frac{1}{3} \langle \cos(t) + 2\sin(t), -2\cos(t) + 2\sin(t), 2\cos(t) + \sin(t) \rangle$$

$$\frac{d\mathbf{T}(t)}{ds} = \langle -\sin(t) + 2\cos(t), 2\sin(t) + 2\cos(t), -2\sin(t) + \cos(t) \rangle$$

$$\left| \frac{d \vec{\mathbf{T}}(t)}{ds} \right| = 3$$

so the curvature is constant and is 3.

$$\vec{\mathbf{N}}(t) = \frac{1}{3} \langle -\sin(t) + 2\cos(t), 2\sin(t) + 2\cos(t), -2\sin(t) + \cos(t) \rangle$$

$$\langle \cos(t) + 2\sin(t), -2\cos(t) + 2\sin(t), 2\cos(t) + \sin(t) \rangle \times \\ \langle -\sin(t) + 2\cos(t), 2\sin(t) + 2\cos(t), -2\sin(t) + \cos(t) \rangle = \\ \langle A, B, C \rangle \\ A = \begin{vmatrix} -2\cos(t) + 2\sin(t) & 2\cos(t) + \sin(t) \\ 2\sin(t) + 2\cos(t) & -2\sin(t) + \cos(t) \end{vmatrix} = -6 \\ B = - \begin{vmatrix} \cos(t) + 2\sin(t) & 2\cos(t) + \sin(t) \\ -\sin(t) + 2\cos(t) & -2\sin(t) + \cos(t) \end{vmatrix} = 3 \\ C = \begin{vmatrix} \cos(t) + 2\sin(t) & -2\cos(t) + 2\sin(t) \\ -\sin(t) + 2\cos(t) & 2\sin(t) + 2\cos(t) \end{vmatrix} = 6$$
Hence

Hence

$$\vec{\mathbf{B}}(t) = \frac{1}{9} \langle -6, 3, 6 \rangle = \frac{1}{3} \langle -2, 1, 2 \rangle$$

Normal Plane: This plane is perpendicular to \vec{r} . It is determined by \vec{N} and \vec{B} : \vec{T} is a normal vector for the plane.

Osculating Plane: This plane best captures the motion of the curve. It is determined by $\vec{\mathbf{T}}$ and $\vec{\mathbf{N}}$: $\vec{\mathbf{B}}$ is a normal vector for the plane.

Rectifying Plane: This plane determined by $\vec{\mathbf{T}}$ and $\vec{\mathbf{B}}$: $\vec{\mathbf{N}}$ is a normal vector for the plane. We won't bother with this one.

The binormal is constant if and only if the curve lies in the Osculating Plane.

Hence the curve

$$\vec{r}(t) = \langle \sin(t) - 2\cos(t) + 1, -2\sin(t) - 2\cos(t) + 2, 2\sin(t) - \cos(t) - 5 \rangle$$

is planar, that is, it lies in the plane

$$\langle -2, 1, 2 \rangle \cdot \langle x, y, x \rangle = \langle -2, 1, 2 \rangle \cdot \langle -1, 0, -6 \rangle = -10$$

Arc length formula

$$s(t) = \int_a^t \sqrt{|\vec{r}'(u)|} du .$$

Derivative of arc length

$$\frac{ds(t)}{dt} = |\vec{r}'(t)| .$$

Unit tangent vector

$$\vec{\mathbf{T}} = \frac{d\vec{r}(s)}{ds} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}.$$

Unit normal vector and curvature.

$$\frac{d\vec{\mathbf{T}}}{ds} = \kappa(s)\vec{\mathbf{N}} \ .$$

$$\frac{d\vec{\mathbf{T}}}{ds} = \frac{\frac{d\vec{\mathbf{T}}}{dt}}{|\vec{r}'(t)|}.$$

Unit binormal vector

$$\vec{B} = \vec{T} \times \vec{N}$$

Normal plane at t_0 : normal vector $\vec{\mathbf{T}}(t_0)$, point $\vec{r}(t_0)$.

Osculating plane at t_0 : normal vector $\vec{\mathbf{B}}(t_0)$, point $\vec{r}(t_0)$.