Goals for today

Arc length



Let 7(t) be a curve which is differentiable and whose deriva-
tive is continuous on some interval |a, b]. (It suffices for 7(t)
to be continuous and 77(¢) to be piecewise continuously dif-
ferentiable on [a, b].)
Then

b

| ol
a

exists. But what is it measuring?
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The sum of the lengths of the vectors ri- i approximate the length of (.

There is a value of ¢; in the i*" interval so that |7’(¢;)] is the
absolute value of the slope so |77(¢;)|4; is the length of the

chord and approximates the length of the curve.

| ) de

is the distance traveled by a particle moving along the curve
with parametrization 7(¢).

Hence



This will be the length of the curve as long as the particle
does not go over a part of the curve which has positive length

more than once.

Going around a circle twice BAD,




The curve on the last slide is parametrized by

=t —t,t° =3t —1).
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Intersection point is (2,1) which occurs when ¢ = —1 and

t = 2. The point on the curve at the lower right occurs at

t = —2 and the local min occurs when t = 1.

= (2t — 1,3t — 3)

The length of the curve from t = —2 to t = 3 is given by

JV (2t — 1)? 3t2—32dt—f VOrt — 1462 — 4t + 10 dt

which we would need to evaluate numerically.



Just as in 1st year calculus when you used the Fundamen-
tal theorem to define the log function, we can define the arc

length function for any parametrization which yields length
by
t
s(t) = J 7' (u)|du

An important formula is
ds(t)
dt

As long as |7'(t)| is piecewise positive, s(t) has an inverse

= |™'(®)] -

function ¢(s) and

R(s) = 7(t(s))

is an arc length parametrization of the curve.



Arc length can rarely be computed in practice but one can

always try.

r(t) = <t cos(t), tsin(t), %(275)3/2>

(1) = <(—tsin(t) + cos(t)), (tcos(t) + sin(t)), (2t)"/2

7 (t)] = ¢ (—tsin(t) + cos(t))” + (tcos(t) +sin(t))” + ((26)1/2)”

) =V 2A+ T =t+1

t t

S(t) = f (u+ ) = (/2 4 w)| = £2/2 4 1
0 0

The inverse function in this case is found as follows.

s=1/2+t2s=1"+2t,25+1=1*+2t+1= (¢t +1)%
t+1==+y25+1
t=+2s+1—1
since t should be positive.
7(s) ={(vV2s+1—1)cos(v2s +1—1),
(v2s +1—1)sin(+v/2s + 1 — 1),

%(2(@ — 1))3/2>



dr(t)
The first is T = dr(s) _ _dt

ds ds
_ dt
and by one of earlier formulas
= (1)
7(t)]

—

Hence T is the unit tangent vector to the curve at the point
and we can compute it.



—

S S dT
Since T-T =1, T-d— = 0.

S
Our second vector in the Frenet-Serret frame is the normal
vector, the unit vector N so that — = x(s)N for x(s) = 0.

The function k(s) is called the curvature.



The third vector is the binormal, defined by B=TxN.
The three vectors are mutually orthogonal, have unit length,
and T-N-B gives the right hand rule.

There are more elaborate formula to do calculations but we

will not pursue them here.



(sin(t) — 2cos(t) + 1, —2sin(t) — 2cos(t) + 2, 2sin(t) — cos(t) — 5)

7' (t) = {cos(t) + 2sin(t), —2cos(t) + 2sin(t), 2 cos(t) + sin(t))

(1) =

\/(cos(t) + QSin(t))2 + (—2cos(t) + QSin(t))2 + (2cos(t) + sin(t))2

7)) =3

Hence

—

T(t) = %<cos(t) + 2sin(t), —2 cos(t) + 2sin(t), 2 cos(t) + sin(t)).

dT(t) gt _
ds ds

dt
+ 2cos(t), —2sin(t) + cos(t))

1/3{—sin(t) + 2cos(t), 2sin(t

N———

+CJO|H

(—sin(t) + 2cos(t),2sin(t) + 2 cos(t), —2sin(t) + cos(t))



(sin(t) — 2cos(t) + 1, —2sin(t) — 2cos(t) + 2,2sin(t) — cos(t) — 5)

T(t) = %<cos(t) + 2sin(t), —2cos(t) + 2sin(t), 2 cos(t) + sin(t))

d'CIZ‘;t) = (—sin(t) + 2cos(t), 2sin(t) + 2 cos(t), —2sin(t) + cos(t))
dT(t)
ds | ;

so the curvature is constant and is 3.

N(t) — %<— sin(t) + 2cos(t), 2sin(t) + 2 cos(t), —2sin() + cos(t))



(cos(t) + 2sin(t), —2cos(t) + 2sin(t), 2 cos(t) + sin(t)) x
(—sin(t) + 2 cos(t), 2sin(t) + 2 cos(t), —2sin(t) + cos(t)) =
(A, B,C)

“2cos(t) + 2sin(t)  2cos(t) + sin(t)

2sin(t) + 2cos(t) —2sin(t) + cos(t)

cos(t) + 2sin(t)  2cos(t) + sin(t)

—sin(t) + 2cos(t) —2sin(t) + cos(t)

cos(t) + 2sin(t) —2cos(t) + 2sin(t)

—sin(t) + 2cos(t)  2sin(t) + 2 cos(t)

B(t) = é<—6,3,6> -~ %<—2, 1,2)



Normal Plane: This plane is perpendicular to 7. It is deter-
mined by N and B: T is a normal vector for the plane.
Osculating Plane: This plane best captures the motion of the
curve. It is determined by T and N: B is a normal vector for
the plane.

Rectifying Plane: This plane determined by T and B: Nisa

normal vector for the plane. We won’t bother with this one.



The binormal is constant it and only if the curve lies in the
Osculating Plane.

Hence the curve

(sin(t) — 2cos(t) + 1, —2sin(t) — 2cos(t) + 2, 2sin(t) — cos(t) — 5)

is planar, that is, it lies in the plane

(=2,1,2)« (x,y,x) ={(=2,1,2) - (—1,0,—6) = —10



Arc length formula

s(t) = f V7 (w)]du .

Derivative of arc length

Unit tangent vector

T — _
ds 77 (1)]
Unit normal vector and curvature.
dT .
E = K|S N .
~ dT
dT B At
ds  |7'(t)]
Unit binormal vector
B=TxN

Normal plane at ¢y: normal vector T(ty), point 7().

Osculating plane at ¢o: normal vector B(tp), point 7(to).



