Goals for today

\vec{T} - \vec{N} - \vec{B}

Velocity and acceleration

Arc length formula

$$
s(t) = \int_a^t \sqrt{|\vec{r}'(u)|} du.
$$

Derivative of arc length

$$
\frac{ds(t)}{dt} = |\vec{r}'(t)|.
$$

Unit tangent vector

$$
\vec{\mathbf{T}} = \frac{d\vec{r}(s)}{ds} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}.
$$

Unit normal vector and curvature.

$$
\frac{d\vec{\mathbf{T}}}{ds} = \kappa(s)\vec{\mathbf{N}}.
$$

$$
\frac{d\vec{\mathbf{T}}}{ds} = \frac{\frac{d\vec{\mathbf{T}}}{dt}}{|\vec{r}'(t)|}.
$$

Unit binormal vector

$$
\vec{\mathbf{B}} = \vec{\mathbf{T}} \times \vec{\mathbf{N}}
$$

Normal plane at t_0 : normal vector $\vec{\mathbf{T}}(t_0)$, point $\vec{r}(t_0)$.

Osculating plane at t_0 : normal vector $\vec{B}(t_0)$, point $\vec{r}(t_0)$.

Over the weekend we posted a handout in Canvas/Files giving an easy way to compute \vec{T} - \vec{N} - \vec{B} . Today we are going to reprise this in terms of velocity and acceleration.

One way to interpret a parametrized curve $\vec{r}(t)$ is that it describes a particle moving along a curve which is at the point $\vec{r}(t)$ at time t.

In this case $\vec{r}'(t)$ is the velocity vector, $\vec{v}(t)$, at time t. The speed is $|\vec{r}'(t)|$. Since we are no longer on a line, we can no longer use the sign of the derivative to determine the direction of motion so we split the idea of velocity into a direction, $\vec{\mathbf{T}}(t)$, and a magnitude, speed $v(t) = |\vec{r}'(t)|$. Likewise, acceleration becomes a vector $\vec{\mathbf{a}}(t) = \vec{r}''(t)$.

Since \vec{v} and \vec{r}' are the same thing,

$$
\vec{\mathbf{T}}(t) = \frac{\vec{\mathbf{v}}(t)}{|\vec{\mathbf{v}}(t)|} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}
$$

Also

$$
\vec{r}'(t) \times \vec{r}''(t) = \vec{\mathbf{v}}(t) \times \vec{\mathbf{a}}(t)
$$

and in the handout we saw that $\vec{B}(t)$ points in the same direction as $\vec{r}'(t) \times \vec{r}''(t) = \vec{v}(t) \times \vec{a}(t)$. This gives an easy way to compute $\vec{\mathbf{B}}(t)$ and then we can use $\vec{\mathbf{N}}(t) = \vec{\mathbf{B}}(t) \times \vec{\mathbf{T}}(t)$.

Using the $\vec{v}(t)$ - $\vec{a}(t)$ interpretation, we can use physics terminology to describe the relations we derived in the handout. Any vector \vec{x} based at $\vec{r}(t_0)$ can be written uniquely as

$$
\vec{x} = x_T \vec{\mathbf{T}}(t_0) + x_N \vec{\mathbf{N}}(t_0) + x_B \vec{\mathbf{B}}(t_0)
$$

for scalars x_T , x_N , x_N .

Apply this remark to $\vec{\mathbf{v}}(t)$:

$$
\vec{\mathbf{v}}(t) = v(t)\vec{\mathbf{T}}(t)
$$

with 0 as the coefficient of \vec{N} and of \vec{B} .

Then
$$
\vec{\mathbf{a}}(t) = v'(t)\vec{\mathbf{T}}(t) + v(t)\vec{\mathbf{T}}'(t)
$$
 and
\n
$$
\vec{\mathbf{a}}(t) = v'(t)\vec{\mathbf{T}}(t) + v(t)^2 \kappa(t)\vec{\mathbf{N}}(t)
$$

so a_T is the derivative of speed, which is what we often mean by acceleration, and $a_N = v(t)^2 \kappa(t)$.

Given a formula for speed, a_T is just its derivative. A second way to compute it is

$$
a_T(t) = \frac{\vec{\mathbf{a}}(t)\boldsymbol{\cdot}\vec{\mathbf{v}}(t)}{v(t)}
$$

so there is no need to differentiate anything once you work out \vec{v} and \vec{a} .

The normal component a_N is conceptually more difficult to compute We could try taking the dot product with \vec{N} but this is the most difficult of the \vec{T} - \vec{N} - \vec{B} to compute. But taking the cross product with \vec{v} yields

$$
a_N(t) = \frac{|\vec{\mathbf{v}}(t) \times \vec{\mathbf{a}}(t)|}{|\vec{\mathbf{v}}(t)|}
$$

While it is always true that $\vec{\mathbf{v}}$ and $\vec{\mathbf{T}}$ point in the same direction, this is rarely true of \vec{a} and \vec{N} . However, \vec{v} and \vec{a} span the same plane as $\vec{\bf T}$ and $\vec{\bf N}$ and so $\vec{\bf v}\times\vec{\bf a}$ points in the same direction as \vec{B} .