Goals for today

Partial Derivatives

Chain Rule

Let $f(x_1, \dots, x_n)$ be a function and (a_1, \dots, a_n) . Pick one of the variables, x_i . Define the partial derivative of f with respect to x_i at (a_1, \dots, a_n) by

$$
f_{x_i}(a_1, \cdots, a_i, a_{i+1}, \cdots, a_n) = \n\lim_{x_i \to a_i} \frac{f(a_1, \cdots, x_i, a_{i+1}, \cdots, a_n) - f(a_1, \cdots, a_i, a_{i+1}, \cdots, a_n)}{x_i - a_i}
$$

Other notation is

$$
f_{x_i}(a_1,\dots,a_n)=\frac{\partial f}{\partial x_i}\Big|_{x_i=a_i}=D_if(a_1,\dots,a_n)
$$

Remark: Unlike one-variable calculus, just because the partial derivatives exist the function may not be differentiable. We will not define differentiable here because it's a bit technical but it does occur as an hypothesis in many results going forward. The definition is not useful to check if something is differentiable but there is a theorem:

A function is differentiable if all of its partial derivatives exist and are continuous.

Given $z = f(x, y)$, if you hold one of the variables, say y fixed, you get a parametrized curve $\vec{r}(x) = \langle x, y, f(x, y) \rangle$ fixed, you
and $\Big\langle 1, 0, \Big\rangle$ $\partial\,f$ ∂x i
Lista ka $x_0, y_0, f(x_0, y_0)$ Ï, is its tangent vector at the point on the curve $\vec{r}(x_0)$.

 $\vec{r}(t) = (t, 1, 2 - t^2)$ with $\vec{r}(1) = (1, 1, 1)$.

Chain Rule

Suppose F is a function of n variable, x_1, x_2, \ldots, x_n . Suppose each x_i is a function of m variables, t_1, \ldots, t_m . Then the composition is a function of the t_i ,

$$
H(t_1,\dots,t_m)=F(x_1(t_1,\dots,t_m),\dots,x_n(t_1,\dots,t_m))
$$

If you change t_i keeping the other t_j fixed, all the x_k can change. The change due to the change in x_{ℓ} is ∂F ∂x_ℓ ∂x_ℓ ∂t_i , and the total change is found by summing up all the changes for each x_{ℓ} .

Here is one way to organize the work.

Let
$$
\vec{\nabla}F(x_1, \dots, x_n) = \left\langle \frac{\partial F}{\partial x_1}(x_1, \dots, x_n), \dots, \frac{\partial F}{\partial x_n}(x_1, \dots, x_n) \right\rangle
$$
.
Let $\vec{\mathbf{x}}(t_1, \dots, t_m) = \left\langle x_1(t_1, \dots, t_m), \dots, x_n(t_1, \dots, t_m) \right\rangle$

and define

$$
\frac{\partial \vec{\mathbf{x}}}{\partial t_i}(t_1,\dots,t_m) = \left\langle \frac{\partial x_1}{\partial t_i}(t_1,\dots,t_m),\dots,\frac{\partial x_n}{\partial t_i}(t_1,\dots,t_m) \right\rangle
$$

$$
\frac{\partial H}{\partial t_i}(t_1,\dots,t_m) =
$$

$$
\vec{\nabla}F(x_1,\dots,x_n)\Big|_{(x_1,\dots,x_n)=(x_1(t_1,\dots,t_m),\dots,x_n(t_1,\dots,t_m))} \cdot \frac{\partial \vec{x}}{\partial t_i}(t_1,\dots,t_m)
$$

If you hold all of the t_ℓ fixed except for t_i , $\vec{r}(t_i) = \vec{\mathbf{x}}(t_1, \cdots, t_m)$ is a curve and $\frac{\partial \vec{x}}{\partial x}$ $\partial\, t_i$ (t_1, \dots, t_m) is its tangent vector.

It looks worse than it is.

Step 1. Compute $\vec{\nabla}F(x_1, \dots, x_n)$, which will be an expression in the x_k .

Step 2. Replace each x_k in this formula by $x_k(t_1, \dots, t_m)$ so you have a function of the t_{ℓ} 's.

Calc I Chain Rule: differentiate the outside function and plug in the inside function.

Step 3. Compute $\frac{\partial \vec{x}}{\partial x}$ $\partial\, t_i$ (t_1, \dots, t_m) which is already a function of the t_{ℓ} 's.

Calc I Chain Rule: differentiate the inside function.

Step 4: Take the dot product.

Calc I Chain Rule: Multiply the two functions.

Here F is the "outside function", $\vec{\nabla}$ F is its "derivative"; \vec{x} is the "inside function" and $\frac{\partial \vec{x}}{\partial x}$ $\partial\, t_i$ is its "derivative".

So the general form of the Chain Rule reads: differentiate the outside function; plug in the inside function; differentiate the inside function and multiply the two answers.