Goals for today

Lagrange Multipliers with 1 constraint Maximize/minimize the value of a function F subject to an implicit constraint $g = k$.

Maximize $F(x, y) = xy$ subject to $x + y = 5$. (Find the maximum area you can fence in with a rectangular fence given that you have 5 furlongs of fence.)

1st Semester Calculus: $y = 5 - x$, $F = x(5 - x) = 5x - x^2$. dF $\frac{dx}{dx} = 5 - 2x$; solve $5 - 2x = 0$; $x = 0$ 5 2 $; y = 5 -$ 5 2 ; F $=$ 5 2 , 5 2 $\frac{1}{2}$ $=$ 25 4 square furlongs.

The red dot satisfies the equations

$$
\nabla f = \lambda \nabla g
$$

$$
g(x, y) = k
$$

The red dot satisfies the equations

$$
(1) \t\t f_x = \lambda g_x
$$

$$
(2) \t\t f_y = \lambda g_y
$$

$$
(3) \t\t g(x,y) = k
$$

Maximize $F(x, y) = xy$ subject to $x + y = 5$. (Find the maximum area you can fence in with a rectangular fence given that you have 5 furlongs of fence.)

1st Semester Calculus: $y = 5 - x$, $F = x(5 - x) = 5x - x^2$. dF $\frac{dx}{dx} = 5 - 2x$; solve $5 - 2x = 0$; $x = 0$ 5 2 $; y = 5 -$ 5 2 ; F 5 2 , 5 2 $=$ 25 4 square furlongs.

3rd Semester Calculus: $\nabla F = \langle y, x \rangle; g(x, y) = x + y;$ $\nabla g = \langle 1, 1 \rangle$. Then $\lambda = x$; $\lambda = y$ and $g(x, y) = x + y = 5$.

Why did we find the maximum rather than the minimum? Or even just a local extrema? What happened to Fermat's theorem?

Find the maximum and minimum values of $5x^2 - 3y$ restricted to $x^2 + y^2 = 1$.

Find the maximum and minimum values of $5x^2 - 3y$ restricted to $x^2 + y^2 = 1$.

 $F(x, y) = 5x^2 - 3y$; $g(x, y) = x^2 + y^2$; $\nabla F = \langle 10x, -3 \rangle$; $\nabla g = \langle 2x, 2y \rangle.$

Equations: $10x = \lambda 2x$; $-3 = \lambda 2y$; $x^2 + y^2 = 1$.

 $10x = \lambda 2x$ is satisfied whenever $x = 0$ OR $2\lambda = 10$.

If $x = 0$, $y = \pm 1$ and $\lambda = \mp$ 3 2 .

If $2\lambda = 10$ and $-3 = 10y$, $y = -0.3$ and $x = \pm$ $\overline{}$ 91 10 .

Hence the points and values are $F(0, 1) = -3$; $F(0, -1) = 3$; F (\pm °∕
°° amin'ny faritr'i Nord-Amerika $\overline{}$ $91/10, -0.3$ = $5 \cdot 91/100 + 0.9 = 5.45$ The maximum value is 5.45 at is is assumed at $(\pm$ $\overline{}$ $91/10, -0.3$). Ï.

The minimum value is -3 and it occurs at $(0, 1)$.

Find the maximum and minimum values of $5x^2 - 3y$ restricted to $x^2 + y^2 = 1$. Hence the points and values are $F(0, 1) = -3$; $F(0, -1) = 3; F(\pm)$ \overline{a} $\overline{1}$ $91/10, -0.3) = 5.45$

The maximum value is 5.45 at is is assumed at (\pm) \overline{a} $91/10, -0.3$). Ï. The minimum value is -3 and it occurs at $(0, 1)$.

The constraint equation is closed and bounded. Implicit curves are closed if $g(x, y)$ is continuous. They may or may not be bounded but in this case $g = 1$ is obviously bounded. Hence Fermat says we have an absolute minimal value and an absolute maximal value.

Find the maximum and minimum values of $5x^2 - 3y$ restricted to $x + y = 1$.

$$
F(x,y) = 5x^2 - 3y; g(x,y) = x + y; \nabla F = \langle 10x, -3 \rangle;
$$

$$
\nabla g = \langle 1, 1 \rangle.
$$

Equations: $10x = \lambda$; $-3 = \lambda$; $x + y = 1$.

$$
\lambda = 10x; -3 = 10x; x = -0.3; y = 1.3.
$$

F(-0.3, 1.3) = -3.45

Find the maximum and minimum values of $5x^2 - 3y$ restricted to $x + y = 1$.

 $F(-0.3, 1.3) = -3.45$ is a solution to the equations but is

neither a minimum nor a maximum.

However the constraint equation in this case is not bounded, whereas it was in the previous example.