Goals for today

Lagrange Multipliers with 2 constraints

Maximize/minimize the value of a function

subject to an implicit constraint g(x, y, z) = k

and an implicit constraint h(x, y, z) = c.

The two constraint surfaces intersect in a curve and we want to find all the points on that curve for which F(x, y, z) is a maximum and all the points on the curve for which F(x, y, z) is a minimum.

Pretend we have parametrized the intersection curve with $\vec{r}(t_0)$ being point which is an extrema. Since $\vec{r}(t)$ lies in $g(x,y,z)=k,\ \vec{r}'(t)$ lies in the tangent plane to g at the point and hence is orthogonal to $\nabla g=k$ at the point. A similar discussion shows $\vec{r}'(t)$ is orthogonal to ∇h .

Now look at a point where a level surface $F(x, y, z) = \ell$ intersects the curve. Recall ∇F is the direction in which the value of F is increasing the fastest. So if $\vec{r}'(t_0)$ is not orthogonal to ∇F , moving one way along the curve will increase the value of F whereas moving the other will decrease it. Hence you are not at a local max or a local min. Therefore, if you are at a local extrema, $\vec{r}'(t_0)$ will be orthogonal to ∇F .

We have now produced three vectors in the normal plane to the curve at our point, ∇g , ∇h and ∇F . We assume ∇g and ∇h are not parallel since if they are the tangent to the curve is not well defined.

But then we can write any vector in the plane uniquely as a multiple of ∇g plus a multiple of ∇h :

$$\nabla F = \lambda \nabla g + \mu \nabla h$$

Hence the two constraint version of Lagrange multipliers says solve the following system of equations in five unknowns

$$\nabla F(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z)$$
$$g(x, y, z) = k$$
$$h(x, y, z) = c$$

OR

(1)
$$F_x(x,y,z) = \lambda g_x(x,y,z) + \mu h_x(x,y,z)$$

(2)
$$F_y(x,y,z) = \lambda g_y(x,y,z) + \mu h_y(x,y,z)$$

(3)
$$F_z(x,y,z) = \lambda g_z(x,y,z) + \mu h_z(x,y,z)$$

$$(4) g(x, y, z) = k$$

$$(5) h(x,y,z) = c$$

Be sure to check that the intersection of your constraints is bounded or be prepared to think harder about what your answer means. 1. $F(x, y, z) = xy + z^2$, g(x, y, z) = y - x = 0, $h(x, y, z) = x^2 + y^2 + z^2 = 1$.

2. $F(x,y,z) = 5x^2 - 4z$; g(x,y,z) = 3x - 5z = 10; $h(x,y,z) = x^2 + y^2 = 25$.

2. $F(x,y,z) = 5x^2 - 4z$; g(x,y,z) = 3x - 5z = 10; $h(x,y,z) = x^2 + y^2 = 25$.

$$\langle 10x, 0, -4 \rangle = \lambda \langle 3, 0, -5 \rangle + \mu \langle 2x, 2y, 0 \rangle$$

$$\lambda = \frac{4}{5} = 0.8; \ 0 = 2y\mu \text{ so}$$

$$y = 0 \text{ OR } \mu = 0.$$

$$y = 0: \ x = \pm 5; \ 5z = 3x - 10 \text{ so } (5, 0, 1) \text{ and } (-5, 0, -5).$$

$$\mu = 0: \ 10x = 3\lambda = \frac{12}{5} = 2.4; \ x = \frac{12}{50} = \frac{6}{25} = 0.28.$$

$$5z = 3x - 10; \ z = \frac{3}{5}x - 2 = \frac{3}{5} \cdot \frac{6}{25} - \frac{250}{125} = \frac{18 - 250}{125} = -\frac{232}{125}.$$

$$\left(\frac{6}{25}\right)^2 + y^2 = \frac{25^2}{25} \text{ so } y^2 = \frac{25^2 - 6^2}{25^2} = \frac{589}{25^2} \text{ so } y = \pm \frac{\sqrt{589}}{25}$$

2. $F(x, y, z) = 5x^2 - 4z$.

Critical points are:

$$(5,0,1); (-5,0,-5); \left(\frac{6}{25}, \frac{\sqrt{589}}{25}, -\frac{232}{125}\right) \text{ and } \left(\frac{6}{25}, -\frac{\sqrt{589}}{25}, -\frac{232}{125}\right)$$

$$F(5,0,1) = 125 - 4 = 121$$

$$F(5,0,-5) = 125 + 20 = 145$$

$$F\left(\frac{6}{25}, \frac{\sqrt{589}}{25}, -\frac{232}{125}\right) = 5 \cdot \frac{36}{25^2} + 4 \cdot \frac{232}{125} = \frac{928 + 36}{125} = \frac{964}{125}.$$

$$F\left(\frac{6}{25}, \frac{\sqrt{589}}{25}, \frac{232}{125}\right) = 5 \cdot \frac{36}{25^2} - 4 \cdot \frac{232}{125} = -\frac{928 - 36}{125} = -\frac{892}{125}.$$
$$-\frac{892}{125} < \frac{964}{125} < 8 < 121 < 145$$

3. F(x, y, z) = x; g(x, y, z) = x + y - z = 0; $h(x, y) = x^2 + 2y^2 + 2z^2 = 8$.

3. F(x,y,z) = x; g(x,y,z) = x + y - z = 0; $h(x,y) = x^2 + 2y^2 + 2z^2 = 8$.

$$\nabla F = \langle 1, 0, 0 \rangle; \ \nabla g = \langle 1, 1, -1 \rangle; \ \nabla h = \langle 2x, 4y, 4z \rangle.$$

$$1 = \lambda + 2x\mu; 0 = \lambda + 4y\mu; 0 = -\lambda + 4z\mu.$$

$$4x\mu = 2 - 2\lambda; 4y\mu = -\lambda; 4z\mu = \lambda;$$

$$0 = 4x + 4y - 4z = 2 - 4\lambda; \ \lambda = \frac{1}{2}.$$

$$0 = 4y\mu + 4z\mu$$
 so $\mu = 0$ or $y + z = 0$.

If $\mu = 0$, $\lambda = 0$ which is false so we must have y = -z. It then follows that x = 2z.

If x = 2z, y = -z we have $x^2 + 2y^2 + 2z^2 = 8z^2 = 8$ so $z = \pm 1$.

(2,-1,1) and (-2,1,-1) are the critical points.

4. F(x, y, z) = 4 - z; $g(x, y, z) = x^2 + y^2 = 8$; h(x, y) = x + y + z = 1.

4. F(x, y, z) = 4 - z; $g(x, y, z) = x^2 + y^2 = 8$; h(x, y) = x + y + z = 1.

$$\nabla F = \langle 0, 0, -1 \rangle; \ \nabla g = \langle 2x, 2y, 0 \rangle; \ \nabla h = \langle 1, 1, 1 \rangle.$$

$$0 = 2x\lambda + \mu$$
; $0 = 2y\lambda + \mu$; $-1 = \mu$.

$$2x\lambda = 1$$
; $2y\lambda = 1$; $\lambda \neq 0$ and $x = y$.

$$2x^2 = 8$$
; $x = y = \pm 2$; $z = 1 - x - y = 1 - 2x$.

$$(2,2,-3)$$
 $(-2,-2,5)$

5. $F(x, y, z) = x^2 + 2y^2 + z^2$; g(x, y, z) = x + y + z = 4; h(x, y, z) = x - y + 2z = 12.

5. $F(x, y, z) = x^2 + 2y^2 + z^2$; g(x, y, z) = x + y + z = 4; h(x, y, z) = x - y + 2z = 12.

$$\nabla F = \langle 2x, 4y, 2z \rangle; \ \nabla g = \langle 1, 1, 1 \rangle; \ \nabla h = \langle 1, -1, 2 \rangle.$$

$$2x = \lambda + \mu$$
; $2y = \lambda - \mu$; $2z = \lambda + 2\mu$.

$$2x + 2y + 2z = 3\lambda + 2\mu = 8$$

$$2x - 2y + 4z = 2\lambda + 6\mu = 24$$
; $\lambda + 3\mu = 12$.

$$3\lambda + 9\mu = 36$$
; $7\mu = 36 - 8 = 28$; $\mu = 4$; $\lambda = 0$.

2x = 4, 2y = -4; 2z = 8; so (2, -2, 4) is the only critical point.

5.
$$G(x,y) = x^2 + 2y^2 + (4 - x - y)^2$$
; $g(x,y) = x - y + 2(4 - x - y) = 8 - x - 3y = 12$; $x + 3y = -4$.

$$\nabla G = \langle 2x + 2(4 - x - y)(-1), 4y + 2(4 - x - y)(-1) \rangle = \langle 4x + 2y - 8, 2x + 6y - 8 \rangle;$$

$$\nabla q = \langle 1, 3 \rangle.$$

$$4x + 2y - 8 = \lambda$$
; $2x + 6y - 8 = 3\lambda$.

$$12x + 6y - 24 = 3\lambda = 2x + 6y - 8$$
; $10x = 16$; $5x + y = 8$. $(2, -2)$.

$$G(x,y) = x^2 + 2xy + y^2 - 8x - 8y + 16 + x^2 + 2y^2 = 2x^2 + 3y^2 + 2xy - 8x - 8y + 16$$