Goals for today

Line integrals and conservative fields



Recall the line integral of a vector field F along a curve 7(t),

t € |a, b] is given by
b

f FTds — J F (1)) -7 (t)di
C a
Now suppose F=V f so in this special case, the line integral
1S

f VI (7(t)) -7 (t)dt =f g(t)dt

a a
where this last integral is just a first year calculus integral.

Now let h(t) = f(7(t)) and use the chain rule to compute

W(t) = V() (t)

so the line integral becomes
b

f Y F () (1) dt = f W (t)dt = h(b) — h(a)

a a
and so if f is a potential function

JC Vf-Tds = f(7(b))—f(7(a))

Recall example from last time: . {y,z) .T'ds along 3 sides of
a triangle.



A necessary condition for (P, Q) to be conservative.
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A necessary condition for (P, @, R) to be conservative.
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Not sufficient
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Necessary and sufficient

If | F.Tds only depends on the beginning and end points of
C
the path for all paths then the field is a gradient field.

If f F.Tds = 0 for all closed paths then the field is a gradient
C

field. Sometimes you will see §
C

emphasize that the path is closed.

F.Tds for f F.Tds just to
C

If the necessary conditions above are satisfied in a simply con-
nected region D then the field is a gradient field.



Find a potential for a vector field
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