Goals for today

Green’s Theorem



Let D be a region in the plane and let C' be the curve which is
the boundary of D. We will need an orientation on the curve

which is the boundary of D to state Green’s Theorem.

The correct orientation at a point on the boundary of D, is
found by walking along C'D in the direction which keeps D
on your left. We will use 0D to denote C' with the correct

orientation.



oD = Cy 1L Oy



Which of (a) or (b) is the boundary of D with the correct ori-
entation”
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Work out the correct orientation for 0D in the shaded region.
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Green’s Theorem

Let D be a region in the plane with dD a correctly oriented,
piecewise smooth curve with field (P, @) which has continuous

first partials on a region containing IJ). Then
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Given F'(z,y), if we can find functions P and @ such that

% 0P

JJF(x, y)dA = J Pdx + Qdy
s oD

[t is usually difficult to do this but there are cases where it can

be done.
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Area: F(x,y) =1, 5 {(—y, ). Area of a region D,
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Moments of a region D about the axes,
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Another observation which is sometimes useful is

LD Pdrx+Qdy = LD (P(x, Y) —|—p(x))dx—|— (Q(x, y)+6](y))dy
for any functions p(x) and q(y).
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where ' is any piecewise smooth, simple, closed curve which

contains the origin.



