Curl and Divergence



Let F = (P,Q, R) be a 3D vector field. Define the curl of P

using the following mnemonics.
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The curl of a 3D field is a 3D field.
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If
curlF = 0

we say I’ is irrotational.

curl(Vf) =0 .



The divergence of F is easier to define.
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The divergence of a 3D field is a scalar function.

If
divE = 0

we say ' is incompressible.

div (curl(ﬁ)) =0



Green’s Theorems

Given any 2D field (P, Q) construct a 3D field (P, Q,0).

With the usual hypotheses and notation Green’s Theorem be-
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There is also unit vector orthogonal to T in the plane which

which points outwards.
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Note that if 7(¢) = {(z(t), y(t))
T ds = (2'(t),y'(t)) dt
N ds = /' (t), —'(t)) di

Alphabetical right hand rule: Normal, Tangent, Up .



Maxwell’s Equations

divE = 0 diveH = 0
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