
Curl and Divergence



Let F⃗ “ xP, Q, Ry be a 3D vector field. Define the curl of F⃗

using the following mnemonics.
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The curl of a 3D field is a 3D field.

If
curlF⃗ “ 0⃗

we say F⃗ is irrotational.
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The divergence of F⃗ is easier to define.
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The divergence of a 3D field is a scalar function.

If
divF⃗ “ 0

we say F⃗ is incompressible.
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Green’s Theorems

Given any 2D field xP, Qy construct a 3D field xP, Q, 0y.

With the usual hypotheses and notation Green’s Theorem be-
comes
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There is also unit vector orthogonal to T⃗ in the plane which
which points outwards.
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Note that if r⃗ptq “ xxptq, yptqy

T⃗ ds “ xx1ptq, y1ptqy dt

N⃗ ds “ xy1ptq, ´x1ptqy dt

Alphabetical right hand rule: Normal, Tangent, Up .



Maxwell’s Equations
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