Divergence Theorem

$$\iint_{\partial E} \vec{F} \cdot d\vec{S} = \iiint_{E} (\nabla \cdot \vec{F}) \ dV$$

Evaluate $\iint_{\partial B} \vec{F} \cdot d\vec{S}$ where $\vec{F} = \langle \sin(\pi x), zy^3, z^2 + 4x \rangle$ and B is the box $-1 \le x \le 2$, $0 \le y \le 1$, $1 \le z \le 4$.

Evaluate $\iint_{\partial B} \vec{F} \cdot d\vec{S}$ where $\vec{F} = \langle \sin(\pi x), zy^3, z^2 + 4x \rangle$ and B is the box $-1 \leqslant x \leqslant 2$, $0 \leqslant y \leqslant 1$, $1 \leqslant z \leqslant 4$.

Instead do $\iiint_{B} \nabla \cdot \vec{F} dV.$

$$\nabla \cdot \vec{F} = \frac{\partial \sin(\pi x)}{\partial x} + \frac{\partial z y^3}{\partial y} + \frac{\partial (z^2 + 4x)}{\partial z} = \pi \cos(\pi x) + 3zy^2 + 2z$$

$$\iint_{\partial B} \vec{F} \cdot d\vec{S} = \int_{-1}^{2} \int_{0}^{1} \int_{1}^{4} \pi \cos(\pi x) + 3zy^2 + 2z \, dz \, dy \, dx =$$

$$\int_{-1}^{2} \int_{0}^{1} z \pi \cos(\pi x) + 3y^2 \frac{z^2}{2} + z^2 \Big|_{1}^{4} dy \, dx =$$

$$\int_{-1}^{2} \int_{0}^{1} 3\pi \cos(\pi x) + 3\frac{15y^2}{2} + 15 \, dy \, dx =$$

$$\int_{-1}^{2} 3y \pi \cos(\pi x) + 3\frac{5y^3}{2} + 15y \Big|_{0}^{1} dy \, dx =$$

$$\int_{-1}^{2} 3\pi \cos(\pi x) + \frac{15}{2} + 15 \, dx =$$

$$3\sin(\pi x) + \frac{45}{2}x \Big|_{-1}^{2} = \frac{135}{2}$$

Let $\vec{F} = \langle x, y, z \rangle$ and let E be the ball of radius R centered at (0,0,0). Let $\vec{F}_0 = \frac{1}{R}\vec{F}$.

Let $\vec{F} = \langle x, y, z \rangle$ and let E be the ball of radius R centered at (0,0,0). Let $\vec{F}_0 = \frac{1}{R}\vec{F}$.

Evaluate
$$\iint_{\partial E} \vec{F}_0 \cdot d\vec{S}.$$

On the sphere of radius R, \vec{F}_0 is the outward pointing unit normal so

$$\iint\limits_{\partial E} \vec{F}_0 \cdot d\vec{S} = \iint\limits_{\partial E} 1 \ dS$$

which is the surface area of the sphere of radius R.

Evaluate
$$\iiint_E \nabla \cdot \vec{F}_0 \ dV.$$

$$\nabla \cdot \vec{F} = 3 \text{ so } \nabla \cdot \vec{F}_0 = \frac{3}{R}. \text{ Hence}$$

$$\iiint_E \nabla \cdot \vec{F}_0 \ dV = \iiint_E \frac{3}{R} \ dV = \frac{3}{R} \iiint_E 1 \ dV$$

which is $\frac{3}{R}$ times the volume of the ball.

Surface area: $4\pi R^2$

Volume: $\frac{4}{3}\pi R^3$.

Let $\vec{F} = \langle y^2 + ye^{z^2}, z^2 - x^2, y^2 \rangle$.

Find $\iint_S \vec{F} \cdot d\vec{S}$ over the upper unit hemisphere using the upward normal.

Let
$$\vec{F} = \langle y^2 + y^2 e^{z^2}, z^2 - x^2, y^2 \rangle$$
.

Find $\iint_S \vec{F} \cdot d\vec{S}$ over the upper unit hemisphere using the upward normal.

In spherical coordinates

$$d\vec{S} = \langle \sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi) \rangle \ d\phi \ d\theta$$

$$\vec{F}(\phi, \theta) = \left\langle \left(\sin(\phi) \sin(\theta) \right)^2 + \left(\sin(\phi) \sin(\theta) \right)^2 e^{\cos^2(\phi)}, \\ \cos^2(\phi) - \left(\sin(\phi) \cos(\theta) \right)^2, \\ \left(\sin(\phi) \sin(\theta) \right)^2 \right\rangle$$

$$\iint_{\vec{S}} \vec{F} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{\pi/2} (\sin(\phi)\cos(\theta)) ((\sin(\phi)\sin(\theta))^{2} + e^{\cos^{2}(\phi)}) + (\sin(\phi)\sin(\theta)) (\cos^{2}(\phi) - (\sin(\phi)\cos(\theta))^{2}) + \cos(\phi) ((\sin(\phi)\sin(\theta))^{2}) d\phi d\theta \text{ which is}$$

$$\int_0^{2\pi} \int_0^{\pi/2} \text{function of trigs} + \sin(\phi) \sin(\theta) e^{\cos^2(\phi)} + \text{function of trigs } d\phi \, d\theta$$
Stuck.

Check $\nabla \cdot \vec{F} = \frac{\partial (y^2 + e^{z^2})}{\partial x} + \frac{\partial (z^2 - x^2)}{\partial y} + \frac{\partial y^2}{\partial z} = 0$ so, if E is the solid bounded above by the upper unit hemisphere and below by the unit disk in the xy plane, then

$$\iint_{\partial E} \vec{F} \cdot d\vec{S} = \iiint_{E} (\nabla \cdot \vec{F}) \ dV = 0$$

Now ∂E is the union of the upper unit hemisphere and the disk D so

$$0 = \iint_{\partial E} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot d\vec{S} + \iint_{D} \vec{F} \cdot d\vec{S}$$

Parametrize D by $\langle \rho \cos(\theta), \rho \sin(\theta), 0 \rangle$ $0 \leq \rho \leq 1, 0 \leq \theta \leq 2\pi$.

The outward normal on D is $\langle 0, 0, -1 \rangle$ so $d\vec{S} = \langle 0, 0, -1 \rangle \rho \, d\rho \, d\theta$ and

$$\vec{F}(\rho,\theta) = \left\langle \rho^2 \sin^2(\theta) + e^{0^2}, 0^2 - \rho^2 \cos^2(\theta), \rho^2 \sin^2(\theta) \right\rangle$$

$$\iint_{D} \vec{F} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{1} -\rho^{3} \sin^{2}(\theta) \ d\rho \ d\theta = -\frac{1}{4} \int_{0}^{2\pi} \sin^{2}(\theta) \ d\theta = -\frac{\pi}{4}.$$

Hence

$$\int_{S} \vec{F} \cdot d\vec{S} - \frac{\pi}{4} = 0 \qquad \text{so} \qquad \int_{S} \vec{F} \cdot d\vec{S} = \frac{\pi}{4}$$

Evaluate

$$\iint_{S} \vec{F} \cdot d\vec{S}$$

$$\iint_{S} \vec{F} \cdot d\vec{S}$$
 where $\vec{F} = \left\langle \frac{x}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right\rangle$

where S is any closed surface with (0,0,0) not on the surface.

Evaluate

$$\iint\limits_{S} \vec{F} \cdot d\vec{S}$$

$$\iint_{S} \vec{F} \cdot d\vec{S}$$
 where $\vec{F} = \left\langle \frac{x}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right\rangle$

where S is any closed surface with (0,0,0) not on the surface.

There are two cases: (0,0,0) inside S or (0,0,0) outside S. More precisely, S is the boundary of a bounded solid E and either $(0,0,0) \in E$ or it is not.

Check $\nabla \cdot \vec{F} = 0$.

If $(0,0,0) \notin E$, \vec{F} is defined on all of E and so

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{\hat{\sigma}} \vec{F} \cdot d\vec{S} = \iiint_{E} \nabla \cdot \vec{F} \cdot \vec{V} = 0$$

If $(0,0,0) \in E$, \vec{F} is not defined on all of E. Since E is bounded, there exists R > 0 so that E is contained in the ball of radius R centered at the origin.

Let E_0 denote the ball with the interior of E removed. Then ∂E_0 is the sphere of radius R disjoint union ∂E .

Now \vec{F} is defined on all of E_0 so

$$\iint_{E_0} \vec{F} \cdot d\vec{S} = 0 = \iint_{Sphere} \vec{F} \cdot d\vec{S} + \iint_{S} \vec{F} \cdot d\vec{S}$$

and hence

$$\iint_{S} \vec{F} \cdot d\vec{S} = -\iint_{Sphere} \vec{F} \cdot d\vec{S}$$

In spherical coordinates

$$\vec{F} = \frac{1}{R^3} \langle \cos(\theta) \sin(\phi), \sin(\theta) \sin(\phi), \cos(\phi) \rangle$$

The outward unit normal to the sphere is

$$\vec{n} = R \langle \cos(\theta) \sin(\phi), \sin(\theta) \sin(\phi), \cos(\phi) \rangle$$

but we need the inward one here so

$$\vec{F} \cdot \vec{n} = -\frac{1}{R^2}$$

and thus

$$\iint_{S} \vec{F} \cdot d\vec{S} = \frac{1}{R^2} \text{surface area of sphere} = 4\pi$$

Evaluate

where
$$\vec{F}_{(a,b,c)} = \left\langle \frac{x-a}{\left((x-a)^2 + (y-b)^2 + (z-c)^2\right)^{\frac{3}{2}}}, \frac{y-b}{\left((x-a)^2 + (y-b)^2 + (z-c)^2\right)^{\frac{3}{2}}}, \frac{z-c}{\left((x-a)^2 + (y-b)^2 + (z-c)^2\right)^{\frac{3}{2}}} \right\rangle$$

where S is any closed surface with (a, b, c) not on the surface.