Divergence et al. in other

coordinate systems.
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182 CHAPTER 4. LINE AND SURFACE INTEGRALS

Cartesian (x,y,z): Scalar function F'; Vector field f=fii+f,j+ 3k

OF, OF, OF
—i+ —j+—k
0x oy 0z
o o, of
0x o0y 0z

oty xt = (%L, (2 95y (0 O,
dy 0z 0z O0x
2F 0°F °F

0x2 a2 022

gradient: VF

divergence: V-f =

0x Oy

Laplacian: AF =

Cylindrical (r,60,z): Scalar function F'; Vector field f=f,. e, + foeg+ f. e,

cadiont: F = Loy LOF L OF
Cratae B Y R
. 10 10fy  Of:
: Vf = —— - + ==
divergence " ar(rf,) + -0 + 3
10f, afe) (afr afz) 1 ( d afr)
1:Vxf=|-—-—]e, + |[———= + —|= - —
eur * (r 00 0z ¢ 0z Or e r Or(rfg) 00 5
) 10 ( 0F 10°F 0%F
LaplaCIan: AF = ;5(7‘5) EW + @
Spherical (p,0,¢): Scalar function F'; Vector field f=f, e, + foeg + fp ey
adient: VF aFe + ! aFe + ! aFe
1 5 s — — -
& dp ° ' psing 90 o p 0¢ ¢
. 10 dfy 1 0 .
d CVef = = —(p? — —
ivergence 7 6p(p fo) + psing 90 + psing a(p(sm({)ﬁp)
1 o ofp 1(0 ofp
1: Vxf = —(si - = _
eur v psin¢>(a¢(sm¢’f9) a0 )e" T (ap(pf"’) 6¢)e"
1 dofp 10
WIENCARY AN
psin¢g 00 p dp
1 F 1 2F 1 F
Laplacian: AF = —i(pz 6—) + 0_ + - i(singba—)
p2dp\" ap p2sin®¢ 002 p2sin¢ 0¢ o

The derivation of the above formulas for cylindrical and spherical coordinates is straight-
forward but extremely tedious. The basic idea is to take the Cartesian equivalent of the
quantity in question and to substitute into that formula using the appropriate coordinate
transformation. As an example, we will derive the formula for the gradient in spherical
coordinates.

From: https://www.mecmath.net/VectorCalculus.pdf

A here is the Laplace operator which in our book is written V?

or V.V.

The Cartesian equations are the definitions and the others are
how to compute them in other coordinate systems.



Good summary of the similarities among the various integrals
you have been studying the last year and a half.


https://mate.unipv.it/moiola/ReaDG/VC2016/VectorCalculus_TableIntegrals.pdf

Vector Calculus —MA2VC/MA3VC 2016-17— Summary and comparison of the different integrals of fields

The seven types of integrals we have considered in the lectures are in the
Those in blue are the formulas we use to compute integrals over curvilinear domains of integration (paths I' and surfaces S) as integrals over flat domains
(intervals (t7,tr) and regions R) of the same dimension, by using the parametrisations & : (t7,tr) and X : R — S.

The most important theorems relating these kinds of integrals are mentioned in green.

7= da/{%‘ and 7 = 92X 09X j|0X 0%

@ 5u X 30/ |%5a aT‘ are the orientations of paths and (parametric) surfaces, namely unit tangent and normal vector fields, respectively.
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Fundamental theorem of calculus applies here. - ] lamental theorem of vector calculus applies here.
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(Cylindrical or spherical coordinates can be used.)

Flat domains of integration: defined by boundary only. Curvilinear domains of integration: parametrisation (either & or X) is needed.
Parametrisation allows to compute integrals over flat domains of integration:
(t7,tp) in place of T, R in place of S.

Scalar integrands f, G: no need of orientation. Vector integrands F: orientation (7 or f) of path/surface needed.

e (t;,tp) C R is an interval (1D)

e G:R — R is a real functio; e R C R?is a planar region (2D
wat netion These are the integrands, (D) These are the domains of integration,
e f:R?* = Ris a scalar field namely the functions/fields e D C R? is a domain (3D) namely the geometric objects
o ) of which we compute integrals. 3. ) . on which we compute integrals.
o F:R3 — R3 is a vector field e I' C R? is a path (1D), parametrised by & : (t;,tp) = T

e S C R is a surface (2D), parametrised by X:R— S

Vector Calculus —MA2VC/MA3VC 2016-17— Summary and comparison of main vector calculus theorems

The integral on a(n) of of a is equal to the | of the on/at the Equivalently, in formulae,
tr
Fundamental theorem || interval (¢7,tr) the derivative | real function G | difference function G | endpoints G'(t)dt = G(tp) — f(tr)
t
of calculus of the values '
Fundamental theorem || oriented path T’ 7 gradient scalar field f difference field f endpoints / v f-df=f(q) - f(P)
Jr
of vector calculus from p to g of the values qand p
Green’s theorem two-dimensional region R | k- curl vector field F circulation field F boundary OR // E-(VxF)da= F.df
JJR OR
Stokes’ theorem oriented surface (S, 7) 7. curl vector field F circulation field F boundary 0.5 // (VxF)-dS = / F.df
JJs as
Divergence theorem 3D domain D divergence vector field F flux field F boundary 9D /// (6 . -) dv = # F.dS
D oD
1st domain differential function integral type | function 2nd domain formula
of integration operator or field or evaluation | or field of integration




