1.(5pts) Which function has the following level curves?

(a) $z=x^{2}+3 y^{2}$
(b) $z=3 x^{2}-y^{2}$
(c) $z=x+3 y^{2}$
(d) $z=3 x-2 y$
(e) $z=3 y e^{x}$

Solution. The only answer choice with ellipses as level curves is $z=x^{2}+3 y^{2}$. The level curves of $z=3 x^{2}-y^{2}$ are hyperbolas. The level curves of $z=x+3 y^{2}$ are parabolas. The level curves of $z=3 x-2 y$ are lines. The level curves of $z=3 y e^{x}$ are exponential functions.
2.(5pts) Let $H=x e^{y-z^{2}}, x=2 u v, y=u-v$ and $z=u+v$. Find $\frac{\partial H}{\partial u}$ when $u=3$ and $v=-1$.
(a) 16
(b) 2
(c) 3
(d) -1
(e) 36

Solution. By the Chain Rule

$$
\frac{\partial H}{\partial u}=\left.\nabla H\right|_{\langle 2 u v, u-v, u+v\rangle} \cdot\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right\rangle
$$

Now $\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right\rangle=\langle 2 v, 1,1\rangle$ and $\nabla H=\left\langle e^{y-z^{2}}, x e^{y-z^{2}}, x e^{y-z^{2}}(-2 z)\right\rangle$. When $u=3$, $v=-1,\langle x, y, z\rangle=\langle-6,4,2\rangle$ so

$$
\frac{\partial H}{\partial u}(3,-1)=\langle 1,-6,24\rangle \cdot\langle-2,1,1\rangle=16
$$

3.(5pts) Compute $\frac{\partial z}{\partial x}$ at $(e, 1,1)$ where $z$ is implicitly defined by

$$
e^{2 z}=x^{2} y z
$$

(a) $\frac{2}{e}$
(b) $\frac{2}{e(e-4)}$
(c) $\frac{e(e-4)}{2}$
(d) $\frac{2}{e^{2}-4}$
(e) $\frac{e^{2}-4}{2}$

Solution. Taking the partial with respect to $x$ on both sides gives

$$
2 e^{2 z} \frac{\partial z}{\partial x}=2 x y z+x^{2} y \frac{\partial z}{\partial x}
$$

remembering to use the product rule on the RHS. Solving for $\frac{\partial z}{\partial x}$, we have

$$
\frac{\partial z}{\partial x}=\frac{2 x y z}{2 e^{2 z}-x^{2} y}
$$

Plugging in $(e, 2,1)$ we have

$$
\frac{\partial z}{\partial x}=\frac{2 e}{2 e^{2}-e^{2}}=\frac{2}{e} .
$$

4. (5pts) Find the rate of change of the function $f(x, y)=5 y^{2} \sin x$ at the point $\left(\frac{\pi}{2}, 1\right)$ in the direction of $\langle 4,-3\rangle$.
(a) -6
(b) -30
(c) 0
(d) 4
(e) 20

Solution. Calculate the gradient $\nabla f(x, y)=\left\langle 5 y^{2} \cos x, 10 y \sin x\right\rangle$. So $\nabla f\left(\frac{\pi}{2}, 1\right)=\langle 0,10\rangle$. The magnitude of the direction vector $\langle 4,-3\rangle$ is $\sqrt{16+9}=5$. So the corresponding unit vector is $\vec{u}=\left\langle\frac{4}{5},-\frac{3}{5}\right\rangle$. Altogether,

$$
D_{\vec{u}} f\left(\frac{\pi}{2}, 1\right)=\langle 0,10\rangle \cdot\left\langle\frac{4}{5},-\frac{3}{5}\right\rangle=-6
$$

5.(5pts) Which iterated integral below is equal to the double integral $\iint_{D} x e^{y} d A$ if $D$ is the region in the first quadrant below the graph $y=\cos (x)$ and to the left of $x=\pi$ ?
Warning: Draw a graph of $y=\cos (x)$ to determine the region $D$.
(a) $\int_{0}^{\pi / 2} \int_{0}^{\cos (x)} x e^{y} d y d x$
(b) $\int_{0}^{\pi} \int_{0}^{\cos (x)} x e^{y} d y d x$
(c) $\int_{0}^{\pi / 2} \int_{\cos (x)}^{0} x e^{y} d y d x$
(d) $\int_{0}^{\pi} \int_{\cos (x)}^{0} x e^{y} d y d x$
(e) $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos (x)} x e^{y} d y d x$

Solution. Here is the graph:


The $x$ limits are 0 to $\frac{\pi}{2}$. For a fixed $x$ in this range, $y$ goes from 0 to $\cos (x)$. Hence

$$
\int_{0}^{\pi / 2} \int_{0}^{\cos (x)} x e^{y} d y d x
$$

6.(5pts) Evaluate

$$
\int_{0}^{1} \int_{-y}^{y^{2}} 24 x y d x d y
$$

(a) -1
(b) 0
(c) $-\frac{1}{4}$
(d) $\frac{1}{3}$
(e) -6

## Solution.

$\left.12 \int_{0}^{1} x^{2} y\right|_{-y} ^{y^{2}} d y=12 \int_{0}^{1}\left(y^{4}-(-y)^{2}\right) y d y=12 \int_{0}^{1}\left(y^{5}-y^{3}\right) d y=\left.12\left(\frac{y^{6}}{6}-\frac{y^{4}}{4}\right)\right|_{0} ^{1}=2-3=-1$
7.(5pts) The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{-4 x^{4}+x^{3}+3 x^{2}-4 x^{2} y^{4}+x y^{4}+x y^{5}+3 y^{4}}{x^{2}+y^{4}}$ exists. Which number below is the value of this limit?
(a) 3
(b) 4
(c) -4
(d) -3
(e) 0

Solution. Since you are told that the limit exists, you can evaluate it along any path to the origin. The path $x=0, y=t$ looks easiest:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{-4 x^{4}+x^{3}+3 x^{2}-4 x^{2} y^{4}+x y^{4}+x y^{5}+3 y^{4}}{x^{2}+y^{4}}=\lim _{t \rightarrow 0} \frac{3 t^{4}}{t^{4}}=3
$$

but any path to the origin will do.
8. (5pts) Suppose the temperature at a point $(x, y, z)$ in space is given by

$$
x^{2} y^{2}+e^{-z} .
$$

At the point $(1,-1,1)$, in what direction is the temperature increasing the fastest?
(a) In the direction of $\left\langle 2,-2,-e^{-1}\right\rangle$
(b) In the direction of $\left\langle 2,2,-2 e^{-2}\right\rangle$
(c) In the direction of $\left\langle-2 e^{-1},-2,1\right\rangle$
(d) In the direction of $\langle 1,-1,1\rangle$
(e) In the direction of $\langle 1,-1,1\rangle \times\left\langle 2,2,-2 e^{-2}\right\rangle$

Solution. The gradient function is $\nabla f(x, y, z)=\left\langle 2 x y^{2}, 2 x^{2} y,-e^{-z}\right\rangle$. So the gradient at $(1,-1,1)$ is $\left\langle 2,-2,-e^{-1}\right\rangle$, which gives the direction of the fastest rate of increase. The rate is the magnitude of this vector: $\sqrt{4+4+e^{-2}}=\sqrt{8+e^{-2}}$.
9.(10pts) At what point on the elliptic paraboloid

$$
z=x^{2}+y^{2}-4 x-6 y+16
$$

is the tangent plane parallel to the plane $4 x+2 y+z=3$ ?
Solution. If $f(x, y, z)=x^{2}+y^{2}-4 x-6 y+16-z, \nabla f(x, y, z)=\langle 2 x-4,2 y-6,-1\rangle$. A normal vector to the plane $4 x+2 y+z=3$ is $\langle 4,2,1\rangle$.

The two plane are parallel if and only if the two normal vectors are multiples of each other. If $\langle 2 x-4,2 y-6,-1\rangle$ is a multiple of $\langle 4,2,1\rangle$ the multiple must be -1 from looking at the third coordinate. Then $2 x-4=-4$ and $2 y-6=-2$. Hence $x=0$ and $y=2$ are the $x$ and $y$ coordinates of this point on the surface. But then $z=8$ so

$$
(0,2,8)
$$

is the point on the surface.
OR
As above $\langle 2 x-4,2 y-6,-1\rangle$ and $\langle 4,2,1\rangle$ are parallel so $\langle 2 x-4,2 y-6,-1\rangle \times\langle 4,2,1\rangle=$ $\langle 0,0,0\rangle$. But

$$
\begin{gathered}
\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 x-4 & 2 y-6 & -1 \\
4 & 2 & 1
\end{array}\right|=\langle 2 y-6+2,-(2 x-4+4), 4 x-8-(8 y-24)\rangle= \\
\langle 2 y-4,-2 x, 4 x-8 y+16\rangle=\langle 0,0,0\rangle
\end{gathered}
$$

Hence $y=2$ and $x=0$ from the first two equations and the third is also satisfied. Compute $z=8$ as above.
10. (10pts) Find an equation for the tangent line to the curve of intersection of $x^{2}+y^{2}+z^{2}=25$ and $y=2 \sqrt{3}$ at $(3,2 \sqrt{3}, 2)$ ?

Solution. We already have a point on the line, namely $(3,2 \sqrt{3}, 2)$. Thus all we need is a direction vector, which will be of the form $\left\langle 1,0, \frac{\partial z}{\partial x}\right\rangle$. So we must compute $\frac{\partial z}{\partial x}$. We begin by taking the partial with respect to $x$ of the first equation treating $z$ as a function of $x$,

$$
2 x+2 z \frac{\partial z}{\partial x}=0 .
$$

Therefore $\frac{\partial z}{\partial x}=-\frac{x}{z}$ and thus $\frac{\partial z}{\partial x}(3,2 \sqrt{3}, 2)=-\frac{3}{2}$. So the tangent line is given by

$$
l(t)=\langle 3,2 \sqrt{3}, 2\rangle+t\left\langle 1,0,-\frac{3}{2}\right\rangle=\left\langle 3+t, 2 \sqrt{3}, 2-\frac{3}{2} t\right\rangle
$$

OR
There are two implicit surfaces, $f(x, y, z)=x^{2}+y^{2}+z^{2}=25$ and $g(x, y, z)=y=2 \sqrt{3}$. A vector in the tangent line is

$$
\nabla f \times \nabla g=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 x & 2 y & 2 z \\
0 & 1 & 0
\end{array}\right|=\langle-2 z, 0,2 x\rangle
$$

evaluated at $\langle 3,2 \sqrt{3}, 2\rangle$ which is $\langle-4,0,6\rangle$. Hence

$$
l(t)=\langle 3,2 \sqrt{3}, 2\rangle+t\langle-4,0,6\rangle
$$

11. (10pts) Find the volume of the solid below the graph of $z=12 x^{2}+12 y$ and above the region $T$, where $T$ is the triangle in the $x y$-plane bounded by the lines $y=x, y=0$, and $x=1$.
(a) Write the volume as an iterated integral $d x d y$.

Solution:
$\int_{0}^{1} \int_{y}^{1}\left(12 x^{2}+12 y\right) d x d y$

(b) Write the volume as an iterated integral $d y d x$.

Solution:
$\int_{0}^{1} \int_{0}^{x}\left(12 x^{2}+12 y\right) d y d x$

(c) Evaluate the iterated integral in part (a) or the iterated integral in part (b). You should only do one of them.

Solution:

$$
\begin{gathered}
\int_{0}^{1} \int_{y}^{1}\left(12 x^{2}+12 y\right) d x d y=\left.\int_{0}^{1}\left(4 x^{3}+12 x y\right)\right|_{y} ^{1} d y=\int_{0}^{1}\left(4+12 y-4 y^{3}-12 y^{2}\right) d y= \\
4 y+6 y^{2}-y^{4}-\left.4 y^{2}\right|_{0} ^{1}=4+6-1-4=5
\end{gathered}
$$

OR
$\int_{0}^{1} \int_{0}^{x}\left(12 x^{2}+12 y\right) d y d x=\left.\int_{0}^{1}\left(12 x^{2} y+6 y^{2}\right)\right|_{0} ^{x} d y=\int_{0}^{1}\left(12 x^{3}+6 x^{2}\right) d x=3 x^{4}+\left.2 x^{3}\right|_{0} ^{1}=5$
12.(10pts) Define a function $f(x, y)=3 x y-x^{3}-y^{3}$.
(a) Find all the critical points of $f(x, y)$.

## Solution:

$$
\nabla f=\left\langle 3 y-3 x^{2}, 3 x-3 y^{2}\right\rangle=\langle 0,0\rangle
$$

so $3 y-3 x^{2}=0$, and $3 x-3 y^{2}=0$. Hence $y=x^{2}$ and $x-x^{4}=0$. Hence $x=0$ or $x=1$. So the critical points are

$$
(0,0) \quad \text { and } \quad(1,1)
$$

(b) Use the Second Derivative Test to identify the local minima, local maxima and saddle points of $f$.

## Solution:

$$
\mathcal{H}_{f}(x, y)=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{rr}
-6 x & 3 \\
3 & -6 y
\end{array}\right|
$$

$\mathcal{H}_{f}(0,0)=\left|\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right|=-9<0$ so $(0,0)$ is a saddle point.
$\mathcal{H}_{f}(1,1)=\left|\begin{array}{rr}-6 & 3 \\ 3 & -6\end{array}\right|=27>0$. Since the diagonal elements are negative, $(1,1)$ is a local maximum.
13.(10pts) Find the maximum value of the function $x^{2} y$ along the ellipse $3 x^{2}+y^{2}=27$, using the method of Lagrange multipliers.

Solution. Let $f(x, y)=x^{2} y$ and let the constraint equation be $g(x, y)=3 x^{2}+y^{2}=27$.
The Lagrange multiplier equations are

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
g(x, y) & =1
\end{aligned}
$$

or

$$
\begin{align*}
2 x y & =\lambda 6 x  \tag{1}\\
x^{2} & =\lambda 2 y  \tag{2}\\
3 x^{2}+y^{2} & =27 \tag{3}
\end{align*}
$$

If $x=0$, then $y= \pm \sqrt{27}$ and $\lambda=0$ solve the equations.
If $y=0,(2)$ implies $x=0$ and $(0,0)$ is not on the constraint curve.
Any other solutions must have $x \neq 0$ and $y \neq 0$. Then equation (1) above becomes (4) below.

$$
\begin{equation*}
y=3 \lambda \tag{4}
\end{equation*}
$$

Equations (4) and (2) imply $3 x^{2}=2 y^{2}$ and then (3) implies $3 y^{2}=27$ or $y= \pm 3$.
If $y=3$, then $\lambda=1, x= \pm \sqrt{6}$ satisfy all three equations.
If $y=-3$, then $\lambda=-1, x= \pm \sqrt{6}$ satisfy all three equations.
Evalating $f(x, y)=x^{2} y$ at points, $f(0, \pm \sqrt{27})=0 ; f( \pm \sqrt{6}, 3)=6 \cdot 3=18$ and $f( \pm \sqrt{6},-3)=$ $6 \cdot(-3)=-18$. Hence the maximum value is 18 .

