1.(6pts) Find symmetric equations of the line L passing through the point $(2,-5,1)$ and perpendicular to the plane $x+3 y-z=9$.
(a) $2(x-1)=(-5)(y-3)=z+1$
(b) $\frac{x-1}{2}=\frac{y-3}{-5}=\frac{z+1}{1}=9$
(c) $\frac{x-2}{1}=\frac{y+5}{3}=\frac{z-1}{-1}$
(d) $\frac{x-1}{2}=\frac{y-3}{-5}=\frac{z+1}{1}$
(e) $(x-2)+3(y-3)-(z-1)=9$
2.(6pts) The two curves below intersect at the point $(1,4,-1)=\mathbf{r}_{1}(0)=\mathbf{r}_{2}(1)$. Find the cosine of the angle of intersection

$$
\begin{aligned}
& \mathbf{r}_{1}(t)=e^{3 t} \mathbf{i}+4 \sin \left(t+\frac{\pi}{2}\right) \mathbf{j}+\left(t^{2}-1\right) \mathbf{k} \\
& \mathbf{r}_{2}(t)=t \mathbf{i}+4 \mathbf{j}+\left(t^{2}-2\right) \mathbf{k}
\end{aligned}
$$

(a) $\frac{e}{\sqrt{e^{2}+4}}$
(b) 0
(c) 3
(d) $\frac{1}{5}$
(e) $\frac{1}{\sqrt{5}}$
3.(6pts) Find the projection of the vector $\langle 1,-1,5\rangle$ onto the vector $\langle 2,1,4\rangle$
(a) $\langle 3,-3,15\rangle$
(b) $\frac{1}{5}\langle 2,1,5\rangle$
(c) $\langle 6,3,12\rangle$
(d) $\langle 2,1,4\rangle$
(e) $\langle 1,-1,5\rangle$
4. $(6 \mathrm{pts})$ Find $\int \mathbf{r}(x) d x$ where

$$
\mathbf{r}(x)=\left(\sec ^{2} x\right) \mathbf{i}+e^{x} \mathbf{k}
$$

Recall: $\int \sec ^{2} x d x=\tan x+C$.
(a) $\left(\tan x+C_{1}\right) \mathbf{i}+\left(e^{x}+C_{2}\right) \mathbf{k}$
(b) $\left(\tan x+C_{1}\right) \mathbf{i}+C_{2} \mathbf{j}+\left(e^{x}+C_{3}\right) \mathbf{k}$
(c) $\tan x+e^{x}+C$
(d) $(\tan x+C) \mathbf{i}+C \mathbf{j}+\left(e^{x}+C\right) \mathbf{k}$
(e) $(\tan x) \mathbf{i}+e^{x} \mathbf{k}$
5. (6pts) The curvature of the function $y=2 \sin x$ at $x=\frac{\pi}{2}$ is
(a) $\frac{1}{2}$
(b) 0
(c) $\sqrt{2}$
(d) 2
(e) Does not exist.
6.(6pts) What is the (approximate) normal component of the acceleration for a car traveling $29 \mathrm{~m} / \mathrm{s}$ around a curve with curvature $\kappa=2 / 31 \mathrm{~m}^{-1}$.
(a) $400.2 \mathrm{~m} / \mathrm{s}^{2}$
(b) $449.5 \mathrm{~m} / \mathrm{s}^{2}$
(c) $1.9 \mathrm{~m} / \mathrm{s}^{2}$
(d) $40.3 \mathrm{~m} / \mathrm{s}^{2}$
(e) $54.3 \mathrm{~m} / \mathrm{s}^{2}$
7.(6pts) Find the area of the triangle formed by the three points $(1,0,1),(2,0,2)$ and $(3,3,3)$.
(a) 2.2
(b) 0
(c) $\frac{3}{2} \sqrt{2}$
(d) $\frac{\sqrt{3}}{2}$
(e) 4
8.(6pts) Find the volume of the parallelepiped spanned by the three vectors $\langle 1,2,-1\rangle,\langle 0,1,2\rangle$ and $\langle 3,2,1\rangle$.
(a) 12
(b) $3 \sqrt{2}$
(c) 0
(d) $9 \sqrt{2}$
(e) $2 \sqrt{3}$
9.(10pts) Find an equation for the plane which goes through the point $(1,2,5)$ and contains the line $\langle 2,1,-1\rangle t+\langle 3,4,1\rangle$.
10.(10pts) Let Π be the plane passing through the point $Q=(5,10,-3)$ with normal vector $\mathbf{n}=\langle 3,1,1\rangle$. Let P be the point on Π which is closest to the origin. Let ℓ be the line passing through the origin and P.
Hint: parts (a) and (b) can be answered independently of each other.
(a) Find the co-ordinates of P.
(b) Find a vector equation for ℓ.
11.(10pts) Suppose the curve C has parametric equations:

$$
x(t)=t^{3}-t, \quad y(t)=1-2 \sqrt{t}, \quad z(t)=t^{2}+t
$$

(a) Let $P=(0,-1,2)$. Find t_{0} so that $P=\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)$.
(b) Let $\mathbf{r}(t)=\left\langle t^{3}-t, 1-2 \sqrt{t}, t^{2}+t\right\rangle$. Find $\mathbf{r}^{\prime}\left(t_{0}\right)$, the tangent vector to the above curve C at the point $P=(0,-1,2)$.
(c) Find the parametric equation for the tangent line to the above curve C at the point $P=$ $(0,-1,2)$.
12. (10pts) Suppose a particle has acceleration function $\mathbf{a}(t)=-\frac{1}{(t+1)^{2}} \mathbf{j}-(\sin t) \mathbf{k}$ for $t \geq 0$. Suppose that the initial position is $\mathbf{r}(0)=\mathbf{k}$ and the initial velocity is $\mathbf{v}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
(a) Find the velocity function.
(b) Find the position function.
13.(10pts) Find an equation for the osculating plane of $\mathbf{r}(t)=\left\langle t, \cos t, e^{t}\right\rangle$ when $t=0$.

1. Solution. The symmetric equations of line are given by $\left(x-x_{0}\right) / a=\left(y-y_{0}\right) / b=(z-$ $\left.z_{0}\right) / c$, where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line and $\langle a, b, c\rangle$ is a direction vector. Since L is perpendicular to the plane $x+3 y-z=9$, then we can take the normal to the plane as the direction vector, this is, $\langle 1,3,-1\rangle$ is a direction vector of L. Therefore, the symmetric equations are $\frac{x-2}{1}=\frac{y+5}{3}=\frac{z-1}{-1}$.
\qquad
2. Solution. Note

$$
\begin{aligned}
& \mathbf{r}_{1}^{\prime}(t)=\left\langle 3 e^{3 t}, 4 \cos \left(t+\frac{\pi}{2}\right), 2 t\right\rangle \\
& \mathbf{r}_{2}^{\prime}(t)=\langle 1,0,2 t\rangle
\end{aligned}
$$

To compute the angle of intersection we find $\mathbf{r}_{\mathbf{1}}^{\prime}(0)=\langle 3,0,0\rangle \mathbf{r}_{\mathbf{2}}^{\prime}(1)=\langle 1,0,2\rangle$ so that $\cos \theta=\frac{\mathbf{r}_{1}^{\prime}(0) \bullet \mathbf{r}_{2}^{\prime}(1)}{\left|\mathbf{r}_{1}^{\prime}(0)\right|\left|\mathbf{r}_{2}^{\prime}(1)\right|}=\frac{3}{3 \sqrt{5}}=\frac{1}{\sqrt{5}}$.

3. Solution.

$$
\operatorname{proj}_{\langle 2,1,4\rangle}(\langle 1,-1,5\rangle)=\frac{\langle 2,1,4\rangle \bullet\langle 1,-1,5\rangle}{\langle 2,1,4\rangle \bullet\langle 2,1,4\rangle}\langle 2,1,4\rangle=\frac{21}{21}\langle 2,1,4\rangle=\langle 2,1,4\rangle
$$

4. Solution.

$$
\begin{aligned}
\int \mathbf{r}(x) d x & =\int\left(\left(\sec ^{2} x\right) \mathbf{i}+e^{x} \mathbf{k}\right) d x \\
& =\left(\int \sec ^{2} x d x\right) \mathbf{i}+\left(\int 0 d x\right) \mathbf{j}+\left(\int e^{x} d x\right) \mathbf{k} \\
& =\left(\tan x+C_{1}\right) \mathbf{i}+C_{2} \mathbf{j}+\left(e^{x}+C_{3}\right) \mathbf{k}
\end{aligned}
$$

5. Solution.

Let $\mathbf{r}(t)=\langle t, 2 \sin t, 0\rangle$. Then $\mathbf{r}^{\prime}(t)=\langle 1,2 \cos t, 0\rangle, \mathbf{r}^{\prime \prime}(t)=\langle 0,-2 \sin t, 0\rangle, \mathbf{r}^{\prime}\left(\frac{\pi}{2}\right)=$ $\langle 1,0,0\rangle$, and $\mathbf{r}^{\prime \prime}\left(\frac{\pi}{2}\right)=\langle 0,-2,0\rangle$. One of the formulas for curvature says that $\kappa=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}}$.
But $\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}$ at $t=\frac{\pi}{2}$ is $\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & -2 & 0\end{array}\right|=\langle 0,0,-2\rangle$ and $|\langle 0,0,-2\rangle|=2$.
6. Solution. Using the formula that $a_{N}=\kappa v^{2}$. Plugging in the values from the problem we find that $a_{N}=54.3$.
7. Solution. Two vectors which form two sides of the triangle are $\langle 1,0,1\rangle=\langle 2,0,2\rangle-\langle 1,0,1\rangle$ and $\langle 2,3,2\rangle=\langle 3,3,3\rangle-\langle 1,0,1\rangle$. Hence

$$
\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 1 \\
2 & 3 & 2
\end{array}\right|=\langle 3-0,-(2-2), 3-0\rangle=\langle 3,0,3\rangle
$$

The area of the parallelogram is $|\langle 3,0,3\rangle|=\sqrt{9+0+9}=3 \sqrt{2}$ and the area of the triangle is half this.
8. Solution. Answer is the absolute value of the triple product

$$
\left|\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 2 \\
3 & 2 & 1
\end{array}\right|=1 \cdot\left|\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right|-(2) \cdot\left|\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right|+-1 \cdot\left|\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right|=-3+12+3=12
$$

9. Solution. One vector in the plane is $\langle 2,1,-1\rangle$. A second is $\langle 3,4,1\rangle-\langle 1,2,5\rangle=\langle 2,2,-4\rangle$. Hence a normal vector for the plane is

$$
\mathbf{N}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 2 & -4 \\
2 & 1 & -1
\end{array}\right|=\langle-2+4,-(-2+8), 2-4\rangle=\langle 2,-6,-2\rangle
$$

Hence an equation is

$$
\langle 2,-6,-2\rangle \bullet\langle x, y, z\rangle=\langle 2,-6,-2\rangle \bullet\langle 1,2,5\rangle=2-12-10=-20
$$

or

$$
-2 x+6 y+2 z=20 \text { or }-x+3 y+z=10 .
$$

10. Solution. We find the position vector of P as

$$
\stackrel{\rightharpoonup}{O P} .=\operatorname{Proj}_{\mathbf{n}} \mathbf{O Q}=\frac{\mathbf{O Q} \bullet \mathbf{n}}{\mathbf{n} \bullet \mathbf{n}} \mathbf{n}=\frac{22}{11}\langle 3,1,1\rangle=\langle 6,2,2\rangle
$$

and so $P=(6,2,2)$.
The line ℓ has direction \mathbf{n}, and passes through the origin, so has vector equation

$$
\langle 3,1,1\rangle \bullet\langle x, y, z\rangle=0
$$

11. Solution.
(a) $0=t_{0}^{3}-t_{0}=t_{0}\left(t_{0}-1\right)\left(t_{0}+1\right)$ implies $t=0,1$, or -1 .
$-1=1-2 \sqrt{t_{0}}$ implies $2 \sqrt{t_{0}}=2$ i.e. $t_{0}=1$.
(b) $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}-1,-t^{-\frac{1}{2}}, 2 t+1\right\rangle$

$$
\mathbf{r}^{\prime}(1)=\langle 2,-1,3\rangle
$$

(c) Let $\mathbf{v}(t)=\langle 2,-1,3\rangle$. Then the vector equation for the tangent line to C at P is given by $t \mathbf{v}(1)+\langle 0,-1,2\rangle=\langle 2 t,-t, 3 t\rangle+\langle 0,-1,2\rangle=\langle 2 t,-t-1,3 t+2\rangle$.

Then the parametric equation for the tangent line to C at P is given by $x(t)=2 t, \quad y(t)=-t-1, \quad z(t)=3 t+2$.
12. Solution. First find the velocity function as the integral of the acceleration function

$$
\mathbf{v}(t)=\int \mathbf{a}(t) d t=C_{1} \mathbf{i}+\left(\frac{1}{t+1}+C_{2}\right) \mathbf{j}+\left(\cos t+C_{3}\right) \mathbf{k}
$$

Next we plug in $t=0$ and compare with the initial velocity

$$
\mathbf{v}(0)=C_{1} \mathbf{i}+\left(\frac{1}{0+1}+C_{2}\right) \mathbf{j}+\left(\cos 0+C_{3}\right) \mathbf{k}=C_{1} \mathbf{i}+\left(1+C_{2}\right) \mathbf{j}+\left(1+C_{3}\right) \mathbf{k}
$$

and by comparison to the given initial velocity, $\mathbf{v}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$, we have

$$
C_{1}=1, C_{2}=C_{3}=0
$$

So, the velocity function is

$$
\mathbf{v}(t)=\mathbf{i}+\frac{1}{t+1} \mathbf{j}+(\cos t) \mathbf{k}
$$

The position function is the integral of the velocity function

$$
\mathbf{r}(t)=\int \mathbf{v}(t) d t=\left(t+D_{1}\right) \mathbf{i}+\left(\ln (t+1)+D_{2}\right) \mathbf{j}+\left(\sin t+D_{3}\right) \mathbf{k}
$$

Next, we plug in $t=0$ and compare with the initial position

$$
\mathbf{r}(0)=\left(0+D_{1}\right) \mathbf{i}+\left(\ln (0+1)+D_{2}\right) \mathbf{j}+\left(\sin 0+D_{3}\right) \mathbf{k}=D_{1} \mathbf{i}+D_{2} \mathbf{j}+D_{3} \mathbf{k}
$$

and by comparison to the given initial position, $\mathbf{r}(0)=\mathbf{k}$, we have

$$
D_{1}=D_{2}=0 \quad D_{3}=1
$$

Thus, the position function is

$$
\mathbf{r}(t)=t \mathbf{i}+\ln (t+1) \mathbf{j}+1+\sin t \mathbf{k}
$$

OR using vector arithmetic

$$
\mathbf{v}(t)=\int\left\langle 0,-\frac{1}{(t+1)^{2}},-\sin t\right\rangle d t=\left\langle 0, \frac{1}{t+1}, \cos t\right\rangle+\mathbf{C}
$$

Then $\mathbf{v}(0)=\langle 0,1,1\rangle+\mathbf{C}=\langle 1,1,1\rangle$ so $\mathbf{C}=\langle 1,0,0\rangle$ and

$$
\mathbf{v}(t)=\left\langle 1, \frac{1}{t+1}, \cos t\right\rangle
$$

Then

$$
\mathbf{r}(t)=\int\left\langle 1, \frac{1}{t+1}, \cos t\right\rangle d t=\langle t, \ln | t+1|, \sin t\rangle+\mathbf{D}
$$

Then $\mathbf{r}(0)=\langle 0,0,0\rangle+\mathbf{D}=\langle 0,0,0\rangle$ so $\mathbf{D}=\langle 0,0,1\rangle$ and

$$
\mathbf{r}(t)=\langle t, \ln | t+1|, 1+\sin t\rangle
$$

13. Solution. $\mathbf{r}^{\prime}(t)=\left\langle 1,-\sin t, e^{t}\right\rangle, \mathbf{r}^{\prime \prime}(t)=\left\langle 0,-\cos t, e^{t}\right\rangle, \mathbf{r}(0)=\langle 0,1,1\rangle, \mathbf{r}^{\prime}(0)=\langle 1,0,1\rangle$, and $\mathbf{r}^{\prime \prime}(0)=\langle 0,-1,1\rangle$. The normal vector is $\langle 1,0,1\rangle \times\langle 0,-1,1\rangle=\langle 1,-1,-1\rangle$. So an equation is $(x-0)-(y-1)-(z-1)=0$ or $x-y-z=-2$.
