1. (6 pts) Find $\mathrm{d} z / \mathrm{d} t$ when $t=0$, where $z=x^{2}+y^{2}+2 x y, x=\ln (t+1)$ and $y=e^{3 t}$.
(a) 8
(b) 2
(c) 1
(d) 6
(e) 5
2. $(6 \mathrm{pts})$ Calculate the directional derivative of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ at the point $(2,4,2)$ in the direction of the vector $\langle 1,2,1\rangle$.
(a) $\frac{24}{\sqrt{6}}$
(b) $\sqrt{6}$
(c) $-\frac{1}{12}\langle 1,4,1\rangle$
(d) -9.79
(e) $\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle$
3. (6pts) What is the normal line to $z^{2}=9 x^{2}-4 y^{2}$ at $(2,3,0)$?
(a) $\langle 2,3,0\rangle+t\langle 36,-24,0\rangle$
(b) $\langle 2,3,0\rangle+t\langle 18 x,-8 y,-2 z\rangle$
(c) $\langle 2,3\rangle+t\langle 36,-24\rangle$
(d) $36 x-24 y=0$
(e) $\langle 2,3,0\rangle+t\langle 24,36,-12\rangle$
4. (6pts) Find and classify the critical points of $f(x, y)=x^{2}+6 x y-4 y^{2}$.
(a) $(0,0)$, saddle point.
(b) $(0,0)$, local maximum.
(c) $(0,0)$, local minimum.
(d) $(1,1)$, saddle point.
(e) $(1,1)$, local maximum.
5.(6pts) Suppose $f(x, y)=x^{2} y$ with domain $D=\left\{(x, y) \mid x \geq 0, y \geq 0, x^{2}+y^{2} \leq 3\right\}$. What is the absolute maximum value of $f(x, y)$?
(a) 2
(b) 1
(c) 3
(d) 4
(e) 5
5. 6 pts) Consider the following contour plot for a function $f(x, y)$:

The circle is a level curve $g(x, y)=k$. Which of the following must ALWAYS be true?
(a) Subject to $g(x, y)=k, f(x, y)$ has a possible extremum at C.
(b) Subject to $g(x, y)=k, f(x, y)$ has a possible maximum at A.
(c) Subject to $g(x, y)=k, f(x, y)$ has a possible minimum at D.
(d) Subject to $g(x, y)=k, f(x, y)$ has an absolute maximum at B.
(e) $f(x, y)$ has a possible absolute maximum or absolute minimum at C.
7.(6pts) Evaluate the following double integral

$$
\iint_{R}(5-x) d A
$$

for $R=\{(x, y) \mid 0 \leq x \leq 4,0 \leq y \leq 3\}$.
(a) 36
(b) 24
(c) 60
(d) 12
(e) 52
8. (6pts) Consider the double integral of a function f over a region $R, \iint_{R} f d A$. Suppose $\iint_{R} f d A=\int_{1}^{3} \int_{y}^{y^{2}} f(x, y) d x d y$. Which gray region below is R ?
(a)

(b)

(c)

(d)

9.(10pts) (a) Find an equation for the tangent line (in vector or parametric form) at the point $(2,2,1)$ to the curve of intersection of the two surfaces $g(x, y, z)=2 x^{2}+2 y^{2}+z^{2}=17$ and $h(x, y, z)=x^{2}+y^{2}-3 z^{2}=5 .(8 \mathrm{pts})$
(b) Suppose $f(x, y, z)$ is a function with $\nabla f=\langle 0,1,0\rangle$ at the point $(2,2,1)$. Starting at $(2,2,1)$, which direction should one travel along the curve of intersection in order to increase f ? (2 pts)

Note: You can specify a direction along the curve by saying whether the variable in your equation from (a) would increase or decrease, or by choosing a vector tangent to the curve.
10. (10pts) Find the absolute maximum and minimum of $f(x, y, z)=2 x+y$ with respect to the constraints $g(x, y, z)=2 x^{2}+z^{2}=4$ and $h(x, y, z)=2 x+y+3 z=6$.
11.(10pts) Find and classify all critical points of $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2$.
12.(10pts) A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is changing at a rate of $-3 \mathrm{~m} / \mathrm{s}$, calculate the rate at which the radius is changing when the radius is 2 m and the length is 1 m . (Note: An incompressible fluid is a fluid whose volume does not change.)
13. (10pts) Evaluate $\iint_{R} 4 x y d A$ where R is the region bounded above by $y=\sqrt{x}$ and below by $y=x^{3}$.

1. Solution. Notice that $x(0)=\ln (1)=0$ and $y(0)=1$. By the chain rule

$$
\begin{aligned}
\left.\frac{\mathrm{d} z}{\mathrm{~d} t}\right|_{t=0} & =\frac{\partial z}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\left.\frac{\partial z}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right|_{t=0} \\
& =(2 x+2 y)\left(\frac{1}{t+1}\right)+\left.(2 x+2 y) 3 e^{3 t}\right|_{t=0} \\
& =2(1)+(2)(3)=8
\end{aligned}
$$

2. Solution.

$$
\nabla f(2,4,2)=\langle 2 x, 2 y, 2 z\rangle_{(2,4,2)}=\langle 4,8,4\rangle
$$

So

$$
D_{\langle 1,2,1\rangle} f(2,4,2)=\langle 4,8,4\rangle \bullet\langle 1,2,1\rangle \frac{1}{\sqrt{6}}=\frac{4+16+4}{\sqrt{6}}=\frac{24}{\sqrt{6}}
$$

3. Solution. Rewrite the surface as $f(x, y, z)=9 x^{2}-4 y^{2}-z^{2}=0$. Then $\nabla f=\langle 18 x,-8 y,-2 z\rangle$, which is $\langle 36,-24,0\rangle$ at the point $(2,3,0)$. The gradient is normal to the surface, so it gives the direction of the normal line. The equation is therefore $\langle 2,3,0\rangle+t\langle 36,-24,0\rangle$.
4. Solution. The first and second partial derivatives are given by $f_{x}=2 x+6 y, f_{y}=6 x-6 y$, $f_{x x}=2, f_{y y}=-6, f_{x y}=6$. From the first partial derivatives we see that the only critical point is at $(0,0)$. The Hessian is also constant and negative, hence this critical point is a saddle point.
5. Solution. Interior: If (x, y) is a critical point, then $f_{y}(x, y)=x^{2}=0$ and (x, y) is not an interior point.

Boundary: If $x=0$ or $y=0$, then $f(x, y)=0$.
Otherwise, (x, y) is on the curved part of the boundary where $x^{2}=3-y^{2}$ and $f(x, y)=$ $g(y)=3 y-y^{3}$ with $0 \leq y \leq \sqrt{3}$. Since $g^{\prime}(y)=3-3 y^{2}$ we get that $y=1$ is a critical point for this problem. Then $x=\sqrt{2}$ and $f(\sqrt{2}, 1)=2$.

Since the region is closed and bounded, f must have a maximum value and since $2>0,2$ is it.

OR
Lagrange multipliers: $\left\langle 2 x y, x^{2}\right\rangle=\lambda\langle 2 x, 2 y\rangle$. One solution is $x=0$, hence $y=\sqrt{3}, \lambda=0$. Here $f=0$. If $x \neq 0, \lambda=y, 2 y^{2}=x^{2}$ and $y=\frac{x}{\sqrt{2}}$ (the other solutions are not in the region). Hence $x^{2}+\frac{x^{2}}{2}=3$ or $\frac{3 x^{2}}{2}=3$ so $x^{2}=2$ and at this point $f=2$ and as above this must be the maximum value.
6. Solution. At A and at $D, \nabla f$ is not parallel to ∇g, so neither A or D can be an extremum of f subject to $g=k$. B is a potential extremum of f subject to $g=k$, but it could be that B is a absolute minimum, or just a local minimum/maximum. The statement " $f(x, y)$ has a possible absolute maximum or minimum at C " is wrong since the gradient of f at C is not zero.

On another note, it is worthwhile to note that the Lagrange multipliers theorem says nothing about the extrema of f itself, but of f restricted to $g=k$.

Thus $f(x, y)$, subject to $g=k$, having a possible extremum at C is the correct answer since here ∇f is parallel to ∇g and $\nabla g \neq 0$ at C, so this satisfies the hypothesis of the Lagrange multiplier theorem naming C as a candidate extremum point.
7. Solution. The region R is a rectangle in the $x y$-plane, and since $z=5-x$ we see that we are computing the volume of a solid which can be viewed as a rectangular prism with base R and height 1 , together with a (right) triangular prism on top of the rectangular solid with base R and height 4. So we can compute the integral by computing the volumes of the two solids and adding.

Volume of the rectangular prism: $V=l * w * h=4 * 3 * 1=12$
Volume of the triangular prism: $V=\frac{1}{2} l * w * h=\frac{1}{2} 4 * 3 * 4=24$
So the total volume is 36 .

$$
\begin{aligned}
\int_{\int_{R}}^{\mathrm{OR}}(5-x) d A & =\int_{0}^{4} \int_{0}^{3}(5-x) d y d x=\left.\int_{0}^{4}(5-x)\right|_{y=0} ^{y=3} d x=\int_{0}^{4}(15-3 x) d x=15 x- \\
\left.\frac{3 x^{2}}{2}\right|_{x=0} ^{x=4}=60-24 & =36 . \\
\int_{\text {OR }}^{x} \int_{R}(5-x) d A & =\int_{0}^{3} \int_{0}^{4}(5-x) d x d y=\left.\int_{0}^{3}\left(5 x-\frac{x^{2}}{2}\right)\right|_{x=0} ^{x=4} d y=\int_{0}^{3}(20-8) d y= \\
\int_{0}^{3} 12 d y=\left.12 y\right|_{y=0} ^{y=3} & =36 .
\end{aligned}
$$

8. Solution. The region R can be described in formulas as the set of all (x, y) such that $1 \leqslant y \leqslant 3$ and $y \leqslant x \leqslant y^{2}$. There is only one region which lies between $y=1$ and $y=3$.
9. Solution. (a) The line is in the tangent plane to each surface, so its direction is perpendicular to both normal vectors. The normal vectors are $\nabla g=\langle 4 x, 4 y, 2 z\rangle=\langle 8,8,2\rangle$ and $\nabla h=\langle 2 x, 2 y,-6 z\rangle=<4,4,-6>$. The cross product $\nabla g \times \nabla h=\langle-56,56,0\rangle$ will serve as a direction vector. $\langle 2,2,1\rangle+t\langle-56,56,0\rangle$ is an equation for the tangent line.
(b) Let \mathbf{u} be a unit vector which points in the same direction as $\langle-56,56,0\rangle$. Since $D_{\mathbf{u}} f=\frac{\langle 0,1,0\rangle \bullet\langle-56,56,0\rangle}{56 \sqrt{2}}=\frac{1}{\sqrt{2}}>0$ at $(2,2,1)$, one should increase t in order to increase f.

10. Solution.

$$
\begin{gathered}
\nabla f=\langle 2,1,0\rangle \\
\nabla g=\langle 4 x, 0,2 z\rangle \\
\nabla h=\langle 2,1,3\rangle
\end{gathered}
$$

So

$$
\begin{gathered}
2=4 x \lambda+2 \mu \\
1=\mu \\
0=2 \lambda+3 \mu
\end{gathered}
$$

Using the second equation on the first equation we get

$$
2=4 x \lambda+2
$$

This reduces to

$$
0=4 x \lambda
$$

This implies $x=0$ or $\lambda=0$. Let try $\lambda=0$ in the third equation above. That yields $0=3$ which is a contradiction. So $x=0$. Now we can use our restraints to find y, z. Using $g(x, y, z)=2 x^{2}+z^{2}=4$, we get $z^{2}=4$ or $z= \pm 2$. Using $h(x, y, z)=2 x+y+3 z=6$ we see that when $x=0$ and $z=2$ that $y+6=6$ so that $y=0$ and that when $x=0$ and $z=-2$ that $y-6=6$ so that $y=12$. So our critical points are $(0,0,2)$ and $(0,12,2) . f(0,0,2)=0$ for an absolute minimum and $f(0,12,-2)=12$ for an absolute maximum.
11. Solution. Begin by finding all first and second partial derivatives: $f_{x}=6 x y-6 x$, $f_{y}=3 x^{2}+3 y^{2}-6 y, f_{x x}=6 y-6, f_{x y}=6 x, f_{y y}=6 y-6$. We now need the critical points. Find these by solving the equations

$$
\begin{gathered}
f_{x}=6 x y-6 x=0 \\
f_{y}=3 x^{2}+3 y^{2}-6 y=0
\end{gathered}
$$

The first equation factors as $6 x(y-1)=0$ so it will be zero if $x=0$ or $y=1$. The most common mistake here was to forget the $x=0$ solution. To find the critical points we can plug these values into f_{y} and solve for the remaining variable. For $x=0$ we have $f_{y}=3 y^{2}-6 y=0$ which implies $y=0$ or $y=2$. For $y=1$ we have $f_{y}=3 x^{2}-3=0$ which implies $x=1$ or $x=-1$. So if $x=0$ we have the critical points $(0,0)$ and $(0,2)$. If $y=1$ we have the critical points $(1,1)$ and $(-1,1)$. Now all we need to do is classify the critical points. The discriminant $D(x, y)$ is given by

$$
D(x, y)=(6 y-6)^{2}-36 x^{2}
$$

$(0,0): D(0,0)=36>0$ and $f_{x x}(0,0)=-6<0 .(0,2): D(0,2)=36>0$ and $f_{x x}(0,2)=$ $6>0 .(1,1): D(1,1)=-36<0 .(-1,1): D(-1,1)=-36<0$. So $(0,0)$ is a relative max, $(0,2)$ is a relative min, and $(1,1),(-1,1)$ are saddle points.
12. Solution. We have $V=\pi r^{2} \ell$, where V is the volume, r the radius and ℓ the length, and each of r and ℓ are functions of the time, t. Since the fluid is incompressible $\frac{\mathrm{d} V}{\mathrm{~d} t}=0$.

By the chain rule, this is

$$
0=\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\partial V}{\partial r} \frac{\mathrm{~d} r}{\mathrm{~d} t}+\frac{\partial V}{\partial \ell} \frac{\mathrm{~d} \ell}{\mathrm{~d} t}=2 \pi r \ell \frac{\mathrm{~d} r}{\mathrm{~d} t}+\pi r^{2} \frac{\mathrm{~d} \ell}{\mathrm{~d} t} .
$$

Filling in $\mathrm{d} \ell / \mathrm{d} t=-3$ we obtain $\mathrm{d} r / \mathrm{d} t=3 \pi r^{2} / 2 \pi r \ell=3 r / 2 \ell$. When $r=2, \ell=1$ this gives $\mathrm{d} r / \mathrm{d} t=3 \mathrm{~m} / \mathrm{s}$.
13. Solution. A picture of the region:

To set up the double integral as an iterated integral $d y d x$ we first need bounds for x. Clearly we start when $x=0$ and end when $x=1$ or more formally we need to find when $x^{3}=\sqrt{x}$ or $x^{6}=x$ or $x=0, x^{5}=1$, which has solutions $x=0,1$. Then the limits on the inner integral are x^{3} at the bottom and \sqrt{x} at the top.
$\iint_{R} 4 x y d A=\int_{0}^{1} \int_{x^{3}}^{\sqrt{x}} 4 x y d y d x=\left.\int_{0}^{1} 2 x y^{2}\right|_{x^{3}} ^{\sqrt{x}} d x=\int_{0}^{1} 2 x^{2}-2 x^{7} d x=\frac{2 x^{3}}{3}-\left.\frac{2 x^{8}}{8}\right|_{0} ^{1}=$ $\frac{2}{3}-\frac{1}{4}=\frac{5}{12}$

Or we could set up the double integral as an iterated integral $d x d y$. This time we need to know the y-coordinates of the intersection points but the same algebra as above gives $y=0$, 1. The limits on the inner integral start at the right hand curve whose x-coordinate in terms of y is $x=y^{2}$. The upper limit is the x-coordinate of the right-han curve in terms of y which is $x=\sqrt[3]{y}$. Hence

$$
\begin{aligned}
& \quad \iint_{R} 4 x y d A=\int_{0}^{1} \int_{y^{2}}^{\sqrt[3]{y}} 4 x y d x d y=\left.\int_{0}^{1} 2 x^{2} y\right|_{x=y^{2}} ^{x=\sqrt[3]{y}} d x=\int_{0}^{1} 2 y^{5 / 3}-2 y^{5} d y=2 \frac{3}{8} y^{8 / 3}-\left.\frac{2 y^{6}}{6}\right|_{0} ^{1}= \\
& \frac{3}{4}-\frac{1}{3}=\frac{5}{12}
\end{aligned}
$$

