1.(6pts) Find dz/dt when t = 0, where $z = x^2 + y^2 + 2xy$, $x = \ln(t+1)$ and $y = e^{3t}$. (a) 8 (b) 2 (c) 1 (d) 6 (e) 5

2.(6pts) Calculate the directional derivative of $f(x, y, z) = x^2 + y^2 + z^2$ at the point (2, 4, 2) in the direction of the vector $\langle 1, 2, 1 \rangle$.

(a)
$$\frac{24}{\sqrt{6}}$$
 (b) $\sqrt{6}$ (c) $-\frac{1}{12}\langle 1, 4, 1 \rangle$ (d) -9.79 (e) $\left\langle \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle$

3.(6pts) What is the normal line to $z^2 = 9x^2 - 4y^2$ at (2,3,0)?

- (a) $\langle 2, 3, 0 \rangle + t \langle 36, -24, 0 \rangle$ (b) $\langle 2, 3, 0 \rangle + t \langle 18x, -8y, -2z \rangle$
- (c) $\langle 2, 3 \rangle + t \langle 36, -24 \rangle$ (d) 36x 24y = 0
- (e) $\langle 2, 3, 0 \rangle + t \langle 24, 36, -12 \rangle$

4.(6pts) Find and classify the critical points of $f(x, y) = x^2 + 6xy - 4y^2$.

- (a) (0,0), saddle point. (b) (0,0), local maximum.
- (c) (0,0), local minimum. (d) (1,1), saddle point.
- (e) (1,1), local maximum.

- **5.**(6pts) Suppose $f(x, y) = x^2 y$ with domain $D = \{(x, y) | x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$. What is the absolute maximum value of f(x, y)?
 - (a) 2 (b) 1 (c) 3 (d) 4 (e) 5

6.(6pts) Consider the following contour plot for a function f(x, y):

The circle is a level curve g(x, y) = k. Which of the following must ALWAYS be true?

- (a) Subject to g(x, y) = k, f(x, y) has a possible extremum at C.
- (b) Subject to g(x, y) = k, f(x, y) has a possible maximum at A.
- (c) Subject to g(x, y) = k, f(x, y) has a possible minimum at D.
- (d) Subject to g(x, y) = k, f(x, y) has an absolute maximum at B.
- (e) f(x, y) has a possible absolute maximum or absolute minimum at C.

7.(6pts) Evaluate the following double integral

$$\iint_R (5-x) \, dA$$

for
$$R = \{(x, y) | 0 \le x \le 4, 0 \le y \le 3\}.$$

(a) 36 (b) 24 (c) 60 (d) 12 (e) 52

8.(6pts) Consider the double integral of a function f over a region R, $\iint_R f \, dA$. Suppose

9.(10pts) (a) Find an equation for the tangent line (in vector or parametric form) at the point (2, 2, 1) to the curve of intersection of the two surfaces $g(x, y, z) = 2x^2 + 2y^2 + z^2 = 17$ and $h(x, y, z) = x^2 + y^2 - 3z^2 = 5$. (8 pts)

(b) Suppose f(x, y, z) is a function with $\nabla f = \langle 0, 1, 0 \rangle$ at the point (2, 2, 1). Starting at (2, 2, 1), which direction should one travel along the curve of intersection in order to increase f? (2 pts)

Note: You can specify a direction along the curve by saying whether the variable in your equation from (a) would increase or decrease, or by choosing a vector tangent to the curve.

10.(10pts) Find the absolute maximum and minimum of f(x, y, z) = 2x + y with respect to the constraints $g(x, y, z) = 2x^2 + z^2 = 4$ and h(x, y, z) = 2x + y + 3z = 6.

11.(10pts) Find and classify all critical points of $f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$.

12.(10pts) A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is changing at a rate of -3m/s, calculate the rate at which the radius is changing when the radius is 2m and the length is 1m. (Note: An incompressible fluid is a fluid whose volume does not change.)

13.(10pts) Evaluate $\iint_R 4xy \, dA$ where R is the region bounded above by $y = \sqrt{x}$ and below by $y = x^3$.

1. Solution. Notice that $x(0) = \ln(1) = 0$ and y(0) = 1. By the chain rule

$$\begin{aligned} \frac{\mathrm{d}z}{\mathrm{d}t}\Big|_{t=0} &= \frac{\partial z}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}\Big|_{t=0} \\ &= (2x+2y)\left(\frac{1}{t+1}\right) + (2x+2y)3e^{3t}\Big|_{t=0} \\ &= 2(1) + (2)(3) = 8. \end{aligned}$$

2. Solution.

So

$$\nabla f(2,4,2) = \langle 2x, 2y, 2z \rangle_{(2,4,2)} = \langle 4, 8, 4 \rangle$$
$$D_{\langle 1,2,1 \rangle} f(2,4,2) = \langle 4, 8, 4 \rangle \bullet \langle 1,2,1 \rangle \frac{1}{\sqrt{6}} = \frac{4+16+4}{\sqrt{6}} = \frac{24}{\sqrt{6}}$$

- **3. Solution.** Rewrite the surface as $f(x, y, z) = 9x^2 4y^2 z^2 = 0$. Then $\nabla f = \langle 18x, -8y, -2z \rangle$, which is $\langle 36, -24, 0 \rangle$ at the point (2, 3, 0). The gradient is normal to the surface, so it gives the direction of the normal line. The equation is therefore $\langle 2, 3, 0 \rangle + t \langle 36, -24, 0 \rangle$.
- **4. Solution.** The first and second partial derivatives are given by $f_x = 2x + 6y$, $f_y = 6x 6y$, $f_{xx} = 2$, $f_{yy} = -6$, $f_{xy} = 6$. From the first partial derivatives we see that the only critical point is at (0,0). The Hessian is also constant and negative, hence this critical point is a saddle point.

5. Solution. Interior: If (x, y) is a critical point, then $f_y(x, y) = x^2 = 0$ and (x, y) is not an interior point.

Boundary: If x = 0 or y = 0, then f(x, y) = 0.

Otherwise, (x, y) is on the curved part of the boundary where $x^2 = 3 - y^2$ and $f(x, y) = g(y) = 3y - y^3$ with $0 \le y \le \sqrt{3}$. Since $g'(y) = 3 - 3y^2$ we get that y = 1 is a critical point for this problem. Then $x = \sqrt{2}$ and $f(\sqrt{2}, 1) = 2$.

Since the region is closed and bounded, f must have a maximum value and since 2 > 0, 2 is it.

OR

Lagrange multipliers: $\langle 2xy, x^2 \rangle = \lambda \langle 2x, 2y \rangle$. One solution is x = 0, hence $y = \sqrt{3}$, $\lambda = 0$. Here f = 0. If $x \neq 0$, $\lambda = y$, $2y^2 = x^2$ and $y = \frac{x}{\sqrt{2}}$ (the other solutions are not in the region). Hence $x^2 + \frac{x^2}{2} = 3$ or $\frac{3x^2}{2} = 3$ so $x^2 = 2$ and at this point f = 2 and as above this must be the maximum value. 6. Solution. At A and at D, ∇f is not parallel to ∇g , so neither A or D can be an extremum of f subject to g = k. B is a potential extremum of f subject to g = k, but it could be that B is a absolute minimum, or just a local minimum/maximum. The statement "f(x, y) has a possible absolute maximum or minimum at C" is wrong since the gradient of f at C is not zero.

On another note, it is worthwhile to note that the Lagrange multipliers theorem says nothing about the extrema of f itself, but of f restricted to g = k.

Thus f(x, y), subject to g = k, having a possible extremum at C is the correct answer since here ∇f is parallel to ∇g and $\nabla g \neq 0$ at C, so this satisfies the hypothesis of the Lagrange multiplier theorem naming C as a candidate extremum point.

7. Solution. The region R is a rectangle in the xy-plane, and since z = 5 - x we see that we are computing the volume of a solid which can be viewed as a rectangular prism with base R and height 1, together with a (right) triangular prism on top of the rectangular solid with base R and height 4. So we can compute the integral by computing the volumes of the two solids and adding.

Volume of the rectangular prism:
$$V = l * w * h = 4 * 3 * 1 = 12$$

Volume of the triangular prism: $V = \frac{1}{2}l * w * h = \frac{1}{2}4 * 3 * 4 = 24$
So the total volume is 36.
OR

$$\iint_{R} (5 - x) dA = \int_{0}^{4} \int_{0}^{3} (5 - x) dy dx = \int_{0}^{4} (5 - x) \Big|_{y=0}^{y=3} dx = \int_{0}^{4} (15 - 3x) dx = 15x - \frac{3x^{2}}{2}\Big|_{x=0}^{x=4} = 60 - 24 = 36.$$
OR

$$\iint_{R} (5 - x) dA = \int_{0}^{3} \int_{0}^{4} (5 - x) dx dy = \int_{0}^{3} \left(5x - \frac{x^{2}}{2}\right)\Big|_{x=0}^{x=4} dy = \int_{0}^{3} (20 - 8) dy = \int_{0}^{3} 12 dy = 12y\Big|_{y=0}^{y=3} = 36.$$

- 8. Solution. The region R can be described in formulas as the set of all (x, y) such that $1 \le y \le 3$ and $y \le x \le y^2$. There is only one region which lies between y = 1 and y = 3.
- **9. Solution.** (a) The line is in the tangent plane to each surface, so its direction is perpendicular to both normal vectors. The normal vectors are $\nabla g = \langle 4x, 4y, 2z \rangle = \langle 8, 8, 2 \rangle$ and $\nabla h = \langle 2x, 2y, -6z \rangle = \langle 4, 4, -6 \rangle$. The cross product $\nabla g \times \nabla h = \langle -56, 56, 0 \rangle$ will serve as a direction vector. $\langle 2, 2, 1 \rangle + t \langle -56, 56, 0 \rangle$ is an equation for the tangent line.

(b) Let **u** be a unit vector which points in the same direction as $\langle -56, 56, 0 \rangle$. Since $D_{\mathbf{u}}f = \frac{\langle 0, 1, 0 \rangle \bullet \langle -56, 56, 0 \rangle}{56\sqrt{2}} = \frac{1}{\sqrt{2}} > 0$ at (2, 2, 1), one should increase t in order to increase f.

10. Solution.

$$\nabla f = \langle 2, 1, 0 \rangle$$
$$\nabla g = \langle 4x, 0, 2z \rangle$$
$$\nabla h = \langle 2, 1, 3 \rangle$$
$$2 = 4x\lambda + 2\mu$$
$$1 = \mu$$
$$0 = 2\lambda + 3\mu$$

Using the second equation on the first equation we get

$$2 = 4x\lambda + 2$$

This reduces to

$$0 = 4x\lambda$$

This implies x = 0 or $\lambda = 0$. Let try $\lambda = 0$ in the third equation above. That yields 0 = 3 which is a contradiction. So x = 0. Now we can use our restraints to find y, z. Using $g(x, y, z) = 2x^2 + z^2 = 4$, we get $z^2 = 4$ or $z = \pm 2$. Using h(x, y, z) = 2x + y + 3z = 6 we see that when x = 0 and z = 2 that y + 6 = 6 so that y = 0 and that when x = 0 and z = -2 that y - 6 = 6 so that y = 12. So our critical points are (0, 0, 2) and (0, 12, 2). f(0, 0, 2) = 0 for an absolute minimum and f(0, 12, -2) = 12 for an absolute maximum.

11. Solution. Begin by finding all first and second partial derivatives: $f_x = 6xy - 6x$, $f_y = 3x^2 + 3y^2 - 6y$, $f_{xx} = 6y - 6$, $f_{xy} = 6x$, $f_{yy} = 6y - 6$. We now need the critical points. Find these by solving the equations

$$f_x = 6xy - 6x = 0$$

$$f_y = 3x^2 + 3y^2 - 6y = 0$$

The first equation factors as 6x(y-1) = 0 so it will be zero if x = 0 or y = 1. The most common mistake here was to forget the x = 0 solution. To find the critical points we can plug these values into f_y and solve for the remaining variable. For x = 0 we have $f_y = 3y^2 - 6y = 0$ which implies y = 0 or y = 2. For y = 1 we have $f_y = 3x^2 - 3 = 0$ which implies x = 1 or x = -1. So if x = 0 we have the critical points (0,0) and (0,2). If y = 1 we have the critical points (1,1) and (-1,1). Now all we need to do is classify the critical points. The discriminant D(x, y) is given by

$$D(x,y) = (6y-6)^2 - 36x^2$$

(0,0): D(0,0) = 36 > 0 and $f_{xx}(0,0) = -6 < 0$. (0,2): D(0,2) = 36 > 0 and $f_{xx}(0,2) = 6 > 0$. (1,1): D(1,1) = -36 < 0. (-1,1): D(-1,1) = -36 < 0. So (0,0) is a relative max, (0,2) is a relative min, and (1,1), (-1,1) are saddle points.

 So

12. Solution. We have $V = \pi r^2 \ell$, where V is the volume, r the radius and ℓ the length, and each of r and ℓ are functions of the time, t. Since the fluid is incompressible $\frac{\mathrm{d}V}{\mathrm{d}t} = 0$. By the chain rule, this is

$$0 = \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\partial V}{\partial r}\frac{\mathrm{d}r}{\mathrm{d}t} + \frac{\partial V}{\partial \ell}\frac{\mathrm{d}\ell}{\mathrm{d}t} = 2\pi r\ell\frac{\mathrm{d}r}{\mathrm{d}t} + \pi r^2\frac{\mathrm{d}\ell}{\mathrm{d}t}.$$

Filling in $d\ell/dt = -3$ we obtain $dr/dt = 3\pi r^2/2\pi r\ell = 3r/2\ell$. When r = 2, $\ell = 1$ this gives dr/dt = 3m/s.

13. Solution. A picture of the region:

To set up the double integral as an iterated integral dy dx we first need bounds for x. Clearly we start when x = 0 and end when x = 1 or more formally we need to find when $x^3 = \sqrt{x}$ or $x^6 = x$ or x = 0, $x^5 = 1$, which has solutions x = 0, 1. Then the limits on the inner integral are x^3 at the bottom and \sqrt{x} at the top.

$$\iint_{R} 4xy \, dA = \int_{0}^{1} \int_{x^{3}}^{\sqrt{x}} 4xy \, dy \, dx = \int_{0}^{1} 2xy^{2} \Big|_{x^{3}}^{\sqrt{x}} dx = \int_{0}^{1} 2x^{2} - 2x^{7} \, dx = \frac{2x^{3}}{3} - \frac{2x^{8}}{8} \Big|_{0}^{1} = \frac{2}{3} - \frac{1}{4} = \frac{5}{12}$$

Or we could set up the double integral as an iterated integral dx dy. This time we need to know the y-coordinates of the intersection points but the same algebra as above gives y = 0, 1. The limits on the inner integral start at the right hand curve whose x-coordinate in terms of y is $x = y^2$. The upper limit is the x-coordinate of the right-han curve in terms of y which is $x = \sqrt[3]{y}$. Hence

$$\iint_{R} 4xy \, dA = \int_{0}^{1} \int_{y^{2}}^{\sqrt[3]{y}} 4xy \, dx \, dy = \int_{0}^{1} 2x^{2}y \Big|_{x=y^{2}}^{x=\sqrt[3]{y}} dx = \int_{0}^{1} 2y^{5/3} - 2y^{5} \, dy = 2\frac{3}{8}y^{8/3} - \frac{2y^{6}}{6}\Big|_{0}^{1} = \frac{3}{4} - \frac{1}{3} = \frac{5}{12}.$$