M20550 Calculus III Tutorial Worksheet 2

1. Find an equation of the plane passes through the point $(1,1,-7)$ and perpendicular to the line $x=1+4 t, y=1-t, z=-3$.

Solution: To write an equation of a plane, we need one point on the plane and a normal vector (a vector that is perpendicular to the plane).
In this problem, we have the point $(1,1,-7)$ on the plane. Now, we need to find a normal vector. We know our plane is perpendicular to the line $x=1+4 t, y=1-t$, $z=-3$. So, the parallel vector to this line, which is $\mathbf{v}=\langle 4,-1,0\rangle$, can be used as the normal vector to our plane.
Finally, an equation of the plane with normal vector $\langle 4,-1,0\rangle$ passing through $(1,1,-7)$ is given by

$$
\begin{aligned}
\langle 4,-1,0\rangle \cdot\langle x, y, z\rangle & =\langle 4,-1,0\rangle \cdot\langle 1,1,-7\rangle \\
\Longrightarrow 4 x-y & =3 .
\end{aligned}
$$

2. Let ℓ be the line of intersection of the planes given by equations $x-y=1$ and $x-z=1$. Find an equation for ℓ in the form $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.

Solution: To write an equation of the line ℓ, we need to find one point on ℓ and a parallel vector to ℓ.

Since ℓ is the line of intersection of two planes, to find a point on ℓ, we need to find a point that contained in both planes. A point on both planes can be found by setting $x=1$, so $y=z=0$. And we get the point $(1,0,0)$ on ℓ.

A normal vector for the first plane is $\langle 1,-1,0\rangle$ and a normal vector for the second plane is $\langle 1,0,-1\rangle$. A parallel vector of ℓ is a vector perpendicular to the normal vectors of both planes. Thus, a parallel vector of ℓ is given by

$$
\langle 1,-1,0\rangle \times\langle 1,0,-1\rangle=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right|=\langle 1,1,1\rangle .
$$

Hence, the vector equation of ℓ is

$$
\mathbf{r}(t)=\langle 1,0,0\rangle+t\langle 1,1,1\rangle .
$$

3. A particle moves in space in such a way that at time $t(t \geq 0)$, its position is given by the vector-valued function $\mathbf{r}(t)=\left\langle t^{2}+1,2 t^{2}-1,2-3 t^{2}\right\rangle$.
(a) At what time(s) does the particle hit the plane $2 x+2 y+3 z=3$?
(b) Find the point of intersection, if any.

Solution: (a) We have $\mathbf{r}(t)=\left\langle t^{2}+1,2 t^{2}-1,2-3 t^{2}\right\rangle$. So the x, y, z-coordinates of the particle are given by:

$$
x=t^{2}+1, \quad y=2 t^{2}-1, \quad z=2-3 t^{2} .
$$

At the instant the particle hits the plane, the x, y, z-coordinates of the particle have to satisfy the equation $2 x+2 y+3 z=3$. Thus, we get the equation

$$
\begin{aligned}
2\left(t^{2}+1\right)+2\left(2 t^{2}-1\right)+3\left(2-3 t^{2}\right) & =3 \\
2 t^{2}+2+4 t^{2}-2+6-9 t^{2} & =3 \\
-3 t^{2}+6 & =3 \\
t^{2} & =1 \\
t & =1 \quad \text { or } \quad t=-1
\end{aligned}
$$

Therefore, the particle hits the plane $2 x+2 y+3 z=3$ at time $t=1$.
(b) When $t=1$, We have $\mathbf{r}(1)=\left\langle 1^{2}+1,2(1)^{2}-1,2-3(1)^{2}\right\rangle=\langle 2,1,-1\rangle$. Thus, the point of intersection is $(2,1,-1)$.
4. Find an equation of the tangent line to the space curve $\mathbf{r}(t)=\left\langle 2 t^{3}, 3 t, 3 t^{2}\right\rangle$ at the point $(-2,-3,3)$.

Solution: First, we want to find t corresponds to the point $(-2,-3,3) . t$ corresponds to $(-2,-3,3)$ must satisfy the equations

$$
2 t^{3}=-2, \quad 3 t=-3, \quad 3 t^{2}=3
$$

From the second equation, we know $t=-1$.
Next, we want to find $\mathbf{r r}^{\prime}(-1)$, the tangent vector at $t=-1$. The derivative of $\mathbf{r}(t)$ is given by $\mathbf{r}^{\prime}(t)=\left\langle 6 t^{2}, 3,6 t\right\rangle$. So the tangent vector at $t=-1$ is $\mathbf{r}^{\prime}(-1)=\langle 6,3,-6\rangle$.
Then, the vector equation of the tangent line at $(-2,-3,3)$ is

$$
\langle x, y, z\rangle=\langle-2,-3,3\rangle+t\langle 6,3,-6\rangle .
$$

5. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime \prime}(t)=e^{t} \mathbf{i}, \mathbf{r}(0)=2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$, and $\mathbf{r}^{\prime}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$.

Solution:

$$
\mathbf{r}^{\prime}(t)=\int \mathbf{r r}^{\prime \prime}(t) d t=\int\left\langle e^{t}, 0,0\right\rangle d t=\left\langle e^{t}, 0,0\right\rangle+\mathbf{c}
$$

To find \mathbf{c}, we use the information $\mathbf{r}^{\prime}(0)=\langle 1,1,1\rangle$. From the above, we have $\mathbf{r}^{\prime}(0)=$ $\left\langle e^{0}, 0,0\right\rangle+\mathbf{c}$. So, $\left\langle e^{0}, 0,0\right\rangle+\mathbf{c}=\langle 1,1,1\rangle \Longrightarrow \mathbf{c}=\langle 1,1,1\rangle-\left\langle e^{0}, 0,0\right\rangle=\langle 0,1,1\rangle$. Thus, we get

$$
\mathbf{r}^{\prime}(t)=\left\langle e^{t}, 0,0\right\rangle+\langle 0,1,1\rangle \Longrightarrow \mathbf{r}^{\prime}(t)=\left\langle e^{t}, 1,1\right\rangle
$$

Then

$$
\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t) d t=\int\left\langle e^{t}, 1,1\right\rangle d t=\left\langle e^{t}, t, t\right\rangle+\mathbf{d}
$$

To find d, we use the information $\mathbf{r}(0)=\langle 2,3,2\rangle$. We have $\mathbf{r}(0)=\left\langle e^{0}, 0,0\right\rangle+\mathbf{d}=$ $\langle 2,3,2\rangle$. So, $\mathbf{d}=\langle 2,3,2\rangle-\left\langle e^{0}, 0,0\right\rangle=\langle 1,3,2\rangle$.
Finally, we get

$$
\mathbf{r}(t)=\left\langle e^{t}, t, t\right\rangle+\langle 1,3,2\rangle \Longrightarrow \mathbf{r}(t)=\left\langle e^{t}+1, t+3, t+2\right\rangle
$$

6. Let P be a plane with normal vector $\langle-2,2,1\rangle$ passing through the point $(1,1,1)$. Find the distance from the point $(1,2,-5)$ to the plane P.

Solution: Let's make a vector \mathbf{b} from the point $(1,1,1)$ to the point $(1,2,-5)$:

$$
\mathbf{b}=\langle 1-1,2-1,-5-1\rangle=\langle 0,1,-6\rangle
$$

Then, the distance D from the point $(1,2,-5)$ to the plane P is given by

$$
D=\left|\operatorname{comp}_{\mathbf{n}} \mathbf{b}\right|=\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}=\frac{|\langle-2,2,1\rangle \cdot\langle 0,1,-6\rangle|}{|\langle-2,2,1\rangle|}=\frac{|-4|}{\sqrt{(-2)^{2}+2^{2}+1^{2}}}=\frac{4}{3}
$$

7. Find an equation of the plane that passes through the point $(1,2,3)$ and contains the line $\frac{1}{3} x=y-1=2-z$.

Solution: For this problem, in order to find a normal vector of the plane, we first need to find two vectors on the plane then take their cross product.
One vector that lies on the plane is a parallel vector of the line $\frac{1}{3} x=y-1=2-z$ (because this line is contained in the plane). Note that $\frac{1}{3} x=y-1=2-z \Longleftrightarrow$
$\frac{x-0}{3}=\frac{y-1}{1}=\frac{z-2}{-1}$. So, a parallel vector of this line is $\mathbf{v}_{\mathbf{1}}=\langle 3,1,-1\rangle$. Thus, we have $\mathbf{v}_{\mathbf{1}}=\langle 3,1,-1\rangle$ lies on the plane.

To get another vector on the plane, we take one point on the line and make a vector with the point on the plane $(1,2,3)$. One point on the line $\frac{x-0}{3}=\frac{y-1}{1}=\frac{z-2}{-1}$ is $(0,1,2)$. So, we get the second vector $\mathbf{v}_{\mathbf{2}}$ on the plane, $\mathbf{v}_{\mathbf{2}}=\langle 1-0,2-1,3-2\rangle=$ $\langle 1,1,1\rangle$.

Then, a normal vector is given by

$$
\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 1 & -1 \\
1 & 1 & 1
\end{array}\right|=\langle 2,-4,2\rangle .
$$

So, the equation of the required plane is

$$
\begin{aligned}
\langle 2,-4,2\rangle \cdot\langle x, y, z\rangle & =\langle 2,-4,2\rangle \cdot\langle 1,2,3\rangle \\
\Longrightarrow 2 x-4 y+2 z & =0 \\
\Longrightarrow x-2 y+z & =0
\end{aligned}
$$

8. Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=9$ and the plane $x+y-z=5$.

Solution: To find a vector function that represents the curve of intersection, we need to be able to describe x, y, z in terms of t for this curve.
On the $x y$-plane, $x^{2}+y^{2}=9$ represents a circle centers at the origin with radius 3 . So, we can write the parametric equations for this circle as follows:

$$
x=3 \cos t, \quad y=3 \sin t, \quad 0 \leq t \leq 2 \pi .
$$

And from the equation of the plane, we get

$$
z=x+y-5 \Longrightarrow z=3 \cos t+3 \sin t-5, \quad 0 \leq t \leq 2 \pi .
$$

So, a vector function that represents the curve of intersection is given by

$$
\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}+(3 \cos t+3 \sin t-5) \mathbf{k}, \quad 0 \leq t \leq 2 \pi
$$

