## M20550 Calculus III Tutorial Worksheet 5

1. Find $\frac{d z}{d t}$ when $t=2$, where $z=x^{2}+y^{2}-2 x y, x=\ln (t-1)$ and $y=e^{-t}$.

Solution: We have $z=z(x(t), y(t))$. So, by the chain rule, we obtain

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =(2 x-2 y)\left(\frac{1}{t-1}\right)+(2 y-2 x) e^{-t}(-1) \\
& =\left(2 \ln (t-1)-2 e^{-t}\right)\left(\frac{1}{t-1}\right)-\left(2 e^{-t}-2 \ln (t-1)\right) e^{-t}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left.\frac{d z}{d t}\right|_{t=2} & =\left(2 \ln (2-1)-2 e^{-2}\right)\left(\frac{1}{2-1}\right)-\left(2 e^{-2}-2 \ln (2-1)\right) e^{-2} \\
& =\left(0-2 e^{-2}\right) \cdot 1-\left(2 e^{-2}-0\right) e^{-2} \\
& =-2 e^{-2}-2 e^{-4}
\end{aligned}
$$

2. (a) Let $f(x, y, z)=x^{2}-y z$. If $\mathbf{v}=\langle 1,1,0\rangle$, find the directional derivative of $f$ in the direction of $\mathbf{v}$ at the point $(1,2,3)$.
(b) Interpret your result in part (a) by filling in the blanks and circling the correct word of the statement below:
At the point $\qquad$ , the value of the function $f$ is increasing / decreasing at the rate of $\qquad$ as we move in the direction given by the vector $\qquad$ .

Solution: (a) The directional derivative of $f$ in the direction of $\mathbf{v}$ at the point $(1,2,3)$, denote $D_{\mathbf{u}} f(1,2,3)$ where $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$, is given by

$$
D_{\mathbf{u}} f(1,2,3)=\nabla f(1,2,3) \cdot \mathbf{u}
$$

First,

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\langle 1,1,0\rangle}{\sqrt{1^{2}+1^{2}+0^{2}}}=\frac{1}{\sqrt{2}}\langle 1,1,0\rangle .
$$

Secondly, the gradient of $f$ is given by:

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
& =\langle 2 x,-z,-y\rangle \\
\Longrightarrow \nabla f(1,2,3) & =\langle 2,-3,-2\rangle .
\end{aligned}
$$

So, now

$$
\begin{aligned}
D_{\mathbf{u}} f(1,2,3) & =\nabla f(1,2,3) \cdot \mathbf{u} \\
& =\langle 2,-3,-2\rangle \cdot \frac{1}{\sqrt{2}}\langle 1,1,0\rangle \\
& =\frac{1}{\sqrt{2}}\langle 2,-3,-2\rangle \cdot\langle 1,1,0\rangle \\
& =\frac{1}{\sqrt{2}}(2-3) \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

(b) At the point $(1,2,3)$, the value of the function $f$ is decreasing at the rate of $\underline{1 / \sqrt{2}}$ as we move in the direction given by the vector $\langle 1,1,0\rangle$.
3. Let $f(x, y)=\ln (x y)$. Find the maximum rate of change of $f$ at $(1,2)$ and the direction in which it occurs.

Solution: It is a fact that $f$ changes the fastest in the direction of its gradient vector and the maximum rate of change is the magnitude of the gradient vector.
With $f(x, y)=\ln (x y)$, we first compute $\nabla f(1,2)$ :

$$
\begin{aligned}
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle & =\left\langle\frac{y}{x y}, \frac{x}{x y}\right\rangle
\end{aligned}=\left\langle\frac{1}{x}, \frac{1}{y}\right\rangle .
$$

So, the maximum rate of change of $f$ at $(1,2)$ is $\frac{\sqrt{5}}{2}$ and the direction in which it occurs is $\left\langle 1, \frac{1}{2}\right\rangle$.
4. If $h=x^{2}+y^{2}+z^{2}$ and $y \cos z+z \cos x=0$, find $\frac{\partial h}{\partial x}$ assuming that $x$ and $y$ are the independent variables.

Solution: We have $h=h(x, y, z(x, y))$. So,

$$
\frac{\partial h}{\partial x}=2 x+2 z \frac{\partial z}{\partial x} \quad \text { since } z \text { is a function of } x
$$

To find $\frac{\partial z}{\partial x}$, we use implicit differentiation:

$$
\begin{aligned}
y \cos z+z \cos x & =0 \\
\frac{\partial}{\partial x}[y \cos z+z \cos x] & =\frac{\partial}{\partial x}[0] \\
-y \sin z \frac{\partial z}{\partial x}+\frac{\partial z}{\partial x} \cos x-z \sin x & =0 \\
\frac{\partial z}{\partial x}(\cos x-y \sin z) & =z \sin x \\
\frac{\partial z}{\partial x} & =\frac{z \sin x}{\cos x-y \sin z}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\frac{\partial h}{\partial x}=2 x+2 z\left(\frac{z \sin x}{\cos x-y \sin z}\right) \\
\Longrightarrow \frac{\partial h}{\partial x}=2 x+\frac{2 z^{2} \sin x}{\cos x-y \sin z} .
\end{gathered}
$$

5. A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$, calculate the rate at which the radius is changing when the radius is 2 m and the length is 1 m . (Note: An incompressible fluid is a fluid whose volume does not change.)

Solution: Let $V$ be the volume of the cylinder, $r$ be the radius of the cylinder, and $l$ be its length. Then, $V=\pi r^{2} l$. So, $V=V(r(t), l(t))$.
By assumptions, we have $\frac{d l}{d t}=-3$ and incompressibility of the fluid implies $\frac{d V}{d t}=0$.
We want to find $\frac{d r}{d t}$ at the instant when $r=2$ and $l=1$. We have

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d}{d t}\left[\pi r^{2} l\right] \\
0 & =2 \pi r l \frac{d r}{d t}+\pi r^{2} \frac{d l}{d t} . \quad \text { And we know } \frac{d l}{d t}=-3 ; \text { so } \\
0 & =2 \pi r l \frac{d r}{d t}-3 \pi r^{2} \\
\frac{d r}{d t} & =\frac{3 r}{2 l} .
\end{aligned}
$$

Hence, when $r=2, l=1$, we get $\frac{d r}{d t}=\frac{3 \cdot 2}{2 \cdot 1}=3 \mathrm{~m} / \mathrm{s}$.
6. Let $r=r(x, y), x=x(s, t)$, and $y=y(t)$. Given that

$$
\begin{array}{lll}
x(1,0)=2, & x_{s}(1,0)=-1, & x_{t}(1,0)=7 \\
y(0)=3, & y(1)=0 & y^{\prime}(0)=4 \\
r(2,3)=-1, & r_{x}(2,3)=3, & r_{y}(2,3)=5 \\
r_{x}(1,0)=6, & r_{y}(1,0)=-2, &
\end{array}
$$

calculate $\frac{\partial r}{\partial t}$ at $s=1, t=0$.

Solution: We have $r=(x(s, t), y(t))$. So, from the chain rule, we get

$$
\begin{aligned}
\frac{\partial r}{\partial t} & =\frac{\partial r}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial r}{\partial y} \frac{d y}{d t} \\
& =r_{x} x_{t}+r_{y} y^{\prime} \\
& =r_{x}(x, y) x_{t}(s, t)+r_{y}(x, y) y^{\prime}(t)
\end{aligned}
$$

When $s=1$ and $t=0$, we have $x=x(1,0)=2$ and $y=y(0)=3$. So,

$$
\begin{aligned}
\left.\frac{\partial r}{\partial t}\right|_{s=1, t=0} & =r_{x}(2,3) x_{t}(1,0)+r_{y}(2,3) y^{\prime}(0) \\
& =(3)(7)+(5)(4) \\
& =41
\end{aligned}
$$

7. Suppose that over a certain region of space the electrical potential $V$ is given by

$$
V(x, y, z)=5 x^{2}-3 x y+x y z
$$

(a) Find the rate of change of the potential at $P(1,1,0)$ in the direction of the vector $\mathbf{v}=\mathbf{i}+\mathbf{j}-\mathbf{k}$.
(b) In which direction does $V$ decrease most rapidly at $P$ ?
(c) What is the maximum rate of change at $P$ ?

Solution: (a) We have $\mathbf{v}=\langle 1,1,-1\rangle$. So, $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{\sqrt{3}}\langle 1,1,-1\rangle$. We want to find $D_{\mathbf{u}} V(1,1,0)$, the directional derivative of $V$ in the direction of $\mathbf{v}$ at the point $P(1,1,0)$.
First, $\nabla V=\langle 10 x-3 y+y z,-3 x+x z, x y\rangle \Longrightarrow \nabla V(1,1,0)=\langle 7,-3,1\rangle$. So,

$$
\begin{aligned}
D_{\mathbf{u}} V(1,1,0) & =\nabla V(1,1,0) \cdot \mathbf{u} \\
& =\langle 7,-3,1\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,-1\rangle \\
& =\frac{1}{\sqrt{3}}(7-3-1) \\
& =\frac{3}{\sqrt{3}}=\sqrt{3} .
\end{aligned}
$$

(b) At $P, V$ decreases most rapidly in the direction of $-\nabla V(1,1,0)$ which is $\langle-7,3,-1\rangle$.
(c) The maximum rate of change at $P$ is given by $|\nabla V(1,1,0)|=|\langle 7,-3,1\rangle|=\sqrt{59}$.
8. Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+$ $y^{2}-2 x-4 y$ is $\mathbf{i}+\mathbf{j}$.

Solution: We know the direction of fastest change of $f$ at a point $(x, y)$ is given by the direction of $\nabla f(x, y)=\langle 2 x-2,2 y-4\rangle$. So, we want to find all pairs $(x, y)$ such that $\langle 2 x-2,2 y-4\rangle=k\langle 1,1\rangle$ for any constant $k$. We obtain the system of equations

$$
\left\{\begin{array}{l}
2 x-2=k \\
2 y-4=k
\end{array}\right.
$$

Then, $2 x-2=2 y-4 \Longrightarrow y=x+1$. Thus, all the wanted pairs $(x, y)$ are $(x, x+1)$, where $x$ admits any value in the domain. This is exactly all the points on the line $y=x+1$ in the domain of $f$.
9. (a) Find an equation for the tangent line (in vector or parametric form) at the point $(2,2,1)$ to the curve of intersection of the two surfaces $g(x, y, z)=2 x^{2}+2 y^{2}+z^{2}=17$ and $h(x, y, z)=x^{2}+y^{2}-3 z^{2}=5$.
(b) Suppose $f(x, y, z)$ is a function with $\nabla f=\langle 1,0,0\rangle$ at the point $(2,2,1)$. Starting at $(2,2,1)$, which direction should one travel along the curve of intersection in order to increase f? (Note: You can give a tangent vector to the curve at $(2,2,1)$ that points in the desired direction.)

Solution: (a) First, we want to find a parametrization of this curve of intersection. All points on this curve should satisfy

$$
\begin{cases}2 x^{2}+2 y^{2}+z^{2}=17 & \Longrightarrow 2\left(x^{2}+y^{2}\right)+z^{2}=17  \tag{1}\\ x^{2}+y^{2}-3 z^{2}=5 & \Longrightarrow x^{2}+y^{2}=5+3 z^{2}\end{cases}
$$

Rewriting the first equation using the second equation, we get

$$
2\left(5+3 z^{2}\right)+z^{2}=17 \Longrightarrow 7 z^{2}=7 \Longrightarrow z= \pm 1
$$

We will be writing an equation of the tangent line to this curve at the point $(2,2,1)$. So, we only consider the case when $z=1$. Now, with $z=1$, equation (2) above gives $x^{2}+y^{2}=8$. On the $x y$-plane, this is just a circle center at the origin with radius $\sqrt{8}$. So, a parametrization of the curve of intersection between the two surfaces is given by

$$
\mathbf{r}(t)=\langle\sqrt{8} \cos t, \sqrt{8} \sin t, 1\rangle
$$

Now, we see that $t=\frac{\pi}{4}$ corresponds to the point $(2,2,1)$. Thus, a parallel vector to the tangent line at $(2,2,1)$ is given by

$$
\mathbf{r}^{\prime}\left(\frac{\pi}{4}\right)=\langle-2,2,0\rangle
$$

And so, a vector equation of this tangent line is

$$
\langle x, y, z\rangle=\langle 2,2,1\rangle+t\langle-2,2,0\rangle .
$$

OR
(a) $)^{\prime}$ There is no need to parametrize the intersection curve. Both $\nabla g$ and $\nabla h$ are perpendicular to $\mathbf{r}^{\prime}$ so $\nabla g \times \nabla h$ is parallel to $\mathbf{r}^{\prime}$. We get

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
4 x & 4 y & 2 z \\
2 x & 2 y & -6 z
\end{array}\right|=\langle-28 y z, 28 x z, 0\rangle
$$

And so, a vector equation of this tangent line is

$$
\langle x, y, z\rangle=\langle 2,2,1\rangle+t\langle-56,56,0\rangle .
$$

Of course we can divide by 28 to get the formula in solution (a) or by 56 and get

$$
\langle x, y, z\rangle=\langle 2,2,1\rangle+t\langle-1,1,0\rangle .
$$

(b) There are two ways to go from $(2,2,1)$ on this curve. One is in the direction of the tangent vector $\langle-2,2,0\rangle$. The other is going opposite direction to $\langle-2,2,0\rangle$, which is going in the same direction as $\langle 2,-2,0\rangle$.

We want to follow a way such that the directional derivative of $f$ at $(2,2,1)$ would be positive in that direction because we want the value of $f$ to increase. We see that the directional derivative of $f$ at $(2,2,1)$ in the direction of $\langle 2,-2,0\rangle$ is positive since

$$
\nabla f(2,2,1) \cdot\langle 2,-2,0\rangle=\langle 1,0,0\rangle \cdot\langle 2,-2,0\rangle=2>0
$$

Thus, we want to travel along the curve of intersection in the direction of $\langle 2,-2,0\rangle$ in order to increase $f$.

