M20550 Calculus III Tutorial Worksheet 6

1. Write an equation of the tangent line to the curve of intersection between the two surfaces defined by $z=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=7$ at the point $(-1,1,2)$.
Hint: Think about the geometry of the gradient vectors. You don't have to parametrize the curve to do this problem.

Solution: The surface $z=x^{2}+y^{2}$ can be written as the level surface $F(x, y, z)=$ $x^{2}+y^{2}-z=0$; and so the gradient of F is

$$
\nabla F(x, y, z)=\langle 2 x, 2 y,-1\rangle
$$

Also, the gradient of the level surface $G(x, y, z)=x^{2}+2 y^{2}+z^{2}=7$ is

$$
\nabla G(x, y, z)=\langle 2 x, 4 y, 2 z\rangle
$$

The tangent vector at $(-1,1,2)$ of the curve of intersection between these two surfaces is perpendicular to both vectors $\nabla F(-1,1,2)=\langle-2,2,-1\rangle$ and $\nabla G(-1,1,2)=$ $\langle-2,4,4\rangle$. And

$$
\nabla F(-1,1,2) \times \nabla G(-1,1,2)=\langle-2,2,-1\rangle \times\langle-2,4,4\rangle=\langle 12,10,-4\rangle
$$

Thus, $\langle 12,10,-4\rangle$ is a parallel vector of the tangent line to the curve of intersection at $(-1,1,2)$. Thus, an equation of the required tangent line is

$$
\langle x, y, z\rangle=\langle-1,1,2\rangle+t\langle 12,10,-4\rangle .
$$

2. Find the tangent plane and the normal line to the surface $x^{2} y+x z^{2}=2 y^{2} z$ at the point $P=(1,1,1)$.

Solution: The given surface is the zero level surface of the function $F(x, y, z)=$ $x^{2} y+x z^{2}-2 y^{2} z$. So, the normal vector to the tangent plane at the point $P(1,1,1)$ is given by $\nabla F(1,1,1)$. We have

$$
\nabla F(x, y, z)=\left\langle 2 x y+z^{2}, x^{2}-4 y z, 2 x z-2 y^{2}\right\rangle \Longrightarrow \nabla F(1,1,1)=\langle 3,-3,0\rangle
$$

Thus, the equation of the tangent plane at $(1,1,1)$ is

$$
3(x-1)-3(y-1)=0 \Longrightarrow x-y=0
$$

and the equation for the normal line at $(1,1,1)$ is

$$
\langle x, y, z\rangle=\langle 1,1,1\rangle+t\langle 3,-3,0\rangle=\langle 1+3 t, 1-3 t, 1\rangle .
$$

3. Find a point on the surface $z=x^{2}-y^{3}$ where the tangent plane is parallel to the plane $x+3 y+z=0$.

Solution: First, rewrite $z=x^{2}-y^{3}$ into the level surface $F(x, y, z)=z-x^{2}+y^{3}=$ 0 then $\nabla F(x, y, z)=\left\langle-2 x, 3 y^{2}, 1\right\rangle$. Since we want a point (x, y, z) such that the tangent plane at this point is parallel to the plane $x+3 y+z=0$, we can have x, y, z satisfy:
$\left\langle-2 x, 3 y^{2}, 1\right\rangle=\langle 1,3,1\rangle$ where $\langle 1,3,1\rangle$ is a normal vector of $x+3 y+z=0$.
Thus, we get $-2 x=1 \Longrightarrow x=-\frac{1}{2}$, and $3 y^{2}=3 \Longrightarrow y= \pm 1$. We only need one point so pick $y=1$ and with $x=-\frac{1}{2}$, we get $z=\left(-\frac{1}{2}\right)^{2}-(1)^{3}=-\frac{3}{4}$. So, $\left(-\frac{1}{2}, 1,-\frac{3}{4}\right)$ is one point we're looking for.
4. Find all the critical points of $f(x, y)=y^{3}+3 x^{2} y-6 x^{2}-6 y^{2}+2$.

Solution: We want to find all points such that $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$. We have

$$
\left\{\begin{array}{l}
f_{x}(x, y)=6 x y-12 x=0 \tag{1}\\
f_{y}(x, y)=3 y^{2}+3 x^{2}-12 y=0
\end{array}\right.
$$

Equation (1) implies $6 x(y-2)=0 \Longrightarrow x=0$ or $y=2$.

- When $x=0$, equation (2) is equivalent to $3 y^{2}-12 y=0 \Longrightarrow 3 y(y-4)=$ $0 \Longrightarrow y=0$ or $y=4$. So, we get the points $(0,0)$ and $(0,4)$.
- When $y=2$, equation (2) is equivalent to $12+3 x^{2}-24=0 \Longrightarrow x^{2}=4 \Longrightarrow$ $x=-2$ or $x=2$. So, we get the points $(-2,2)$ and $(2,2)$ here.

Thus, all the critical points of f are $(0,0),(0,4),(-2,2),(2,2)$.
5. Find the local maximum and the local minimum value(s) and saddle point(s) of the function $z=x^{3}+y^{3}-3 x y+1$.

Solution: First, let's find all the critical points of $z=x^{3}+y^{3}-3 x y+1$:

$$
\left\{\begin{array}{l}
z_{x}(x, y)=3 x^{2}-3 y=0 \Longrightarrow y=x^{2} \tag{1}\\
z_{y}(x, y)=3 y^{2}-3 x=0
\end{array}\right.
$$

With $y=x^{2}$, equation (2) becomes $3 x^{4}-3 x=0 \Longrightarrow 3 x\left(x^{3}-1\right)=0 \Longrightarrow x=$ 0 or $x=1$. Thus, all the critical points are $(0,0)$ and $(1,1)$.

Now, we will use the Second Derivative Test to test each critical point. We want to compute

$$
D(x, y)=\left|\begin{array}{ll}
z_{x x} & z_{x y} \\
z_{y x} & z_{y y}
\end{array}\right|=z_{x x} z_{y y}-z_{x y}^{2}=(6 x)(6 y)-(-3)^{2}=36 x y-9 .
$$

And we have

$$
D(0,0)=-9<0 \Longrightarrow(0,0) \text { is a saddle point. }
$$

$$
D(1,1)=36-9>0 \text { and } z_{x x}(1,1)=6>0 \Longrightarrow z(1,1) \text { is a local minimum. }
$$

In conclusion, the local minimum value of z is $z(1,1)=1^{3}+1^{3}-3(1)(1)+1=0$. And $(0,0)$ is the saddle point of z, i.e. $z(0,0)$ is neither a local minimum nor local maximum.
6. Identify the absolute maximum and absolute minimum values attained by $g(x, y)=$ $x^{2} y-2 x^{2}$ within the triangle T bounded by the points $P(0,0), Q(2,0)$, and $R(0,4)$.

Solution: The picture for the triangle T :

First, we find all critical points in the interior of the triangle:

$$
\left\{\begin{array}{l}
g_{x}(x, y)=2 x y-4 x=0 \tag{1}\\
g_{y}(x, y)=x^{2}=0
\end{array}\right.
$$

Equation (2) tells us that x must be zero. And when $x=0$, equation (1) is true automatically giving us the points $(0, y)$ for $0 \leq y \leq 4$ are the solutions of this system of equations. So, all the critical points are exactly the boundary $P R$ of the triangle. So, we get no critical point inside the triangle. We move on to analyze the boundaries.

On the boundary $P R$, we have $x=0$ and $0 \leq y \leq 4$. And, $g(0, y)=0$.
On the boundary $P Q$, we have $0 \leq x \leq 2$ and $y=0$. And, $g(x, 0)=-2 x^{2}$. The graph of $-2 x^{2}$ is a parabola concaves downward. So, $g(x, 0)=-2 x^{2}$ with $0 \leq x \leq 2$ attains a maximum value of 0 when $x=0$ and a minimum value of -8 when $x=2$. On the boundary $Q R$, we have $y=-2 x+4$ with $0 \leq x \leq 2$. And, $g(x,-2 x+4)=$ $x^{2}(-2 x+4)-2 x^{2}=-2 x^{3}+2 x^{2}$, for $0 \leq x \leq 2$. The critical numbers of $-2 x^{3}+2 x^{2}$ for $0 \leq x \leq 2$ are $x=0$ and $x=\frac{2}{3}$. So, g has a minimum of 0 at $x=0$ and a maximum of $\frac{8}{27}$ at $x=\frac{2}{3}, y=\frac{8}{3}$ on this boundary.
Here is a summary of the results:

(x, y)	$g(x, y)$
$(0, y)$	0
$(2,0)$	-8
$\left(\frac{2}{3}, \frac{8}{3}\right)$	$\frac{8}{27}$

So, we conclude that on the whole triangle (including boundaries), the function has an absolute maximum of $\frac{8}{27}$ at $\left(\frac{2}{3}, \frac{8}{3}\right)$ and an absolute minimum of -8 at $(2,0)$.
7. Identify the absolute maximum and absolute minimum values attained by $z=4 x^{2}-y^{2}+1$ within the region R bounded by the curve $4 x^{2}+y^{2}=16$.

Solution: First, we find the critical points in the interior of the region R. We have

$$
\begin{cases}z_{x}(x, y)=8 x=0 & \Longrightarrow x=0 \\ z_{y}(x, y)=-2 y=0 & \Longrightarrow y=0\end{cases}
$$

So, the only critical point inside R is $(0,0)$.
Move on to the boundary $4 x^{2}+y^{2}=16$. Note that this is the ellipse $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{4^{2}}=1$.
On this boundary, we have $y^{2}=16-4 x^{2}$ and $-2 \leq x \leq 2$. So, we get $z=$
$4 x^{2}-\left(16-4 x^{2}\right)+1=8 x^{2}-15$ for $-2 \leq x \leq 2$. The critical number here satisfies $16 x=0 \Longrightarrow x=0$. With $x=0, y^{2}=16-4 \cdot 0^{2} \Longrightarrow y= \pm 4$. So, the critical points on the boundary are $(0,-4)$ and $(0,4)$. And the end points here are $(-2,0)$ and $(2,0)$.

Finally, let's compute the values of z at all the points of "interest":

(x, y)	$z=4 x^{2}-y^{2}+1$
$(0,0)$	1
$(0,-4)$	-15
$(0,4)$	-15
$(-2,0)$	17
$(2,0)$	17

In conclusion, the absolute maximum value of z is 17 and it occurs at the points $(-2,0)$ and $(2,0)$. The absolute minimum value of z is -15 and it occurs at the points $(0,-4)$ and $(0,4)$.
Another way of finding extrema on the boundary is to use the method of Lagrange Multipliers. In this language, we want to find the extrema of $z=4 x^{2}-y^{2}+1$ subject to the constraint $g(x, y)=4 x^{2}+y^{2}=16$. We have $\nabla z=\lambda \nabla g$ for some constant λ. So, we get the system of equations:

$$
\left\{\begin{array}{l}
8 x=\lambda 8 x \tag{1}\\
-2 y=\lambda 2 y \\
4 x^{2}+y^{2}=16
\end{array}\right.
$$

Equation $(1) \Leftrightarrow 8 x(1-\lambda)=0 \Longrightarrow x=0$ or $\lambda=1$.

- If $x=0$, then from equation (3) we get $y= \pm 4$. And so we get $(0, \pm 4)$ as the points of interest.
- If $\lambda=1$, then from equation (2) we get $y=0$. With $y=0$, equation (3) gives $x= \pm 2$. So, the points of interest are $(\pm 2,0)$.

Then, we can create the table like we did above to find the absolute max and min of z.
8. Find the point(s) on the surface $y^{2}=9+x z$ that are closest to the origin.

Solution: The distance between any point (x, y, z) on the given surface to the origin is given by

$$
d=\sqrt{x^{2}+y^{2}+z^{2}} .
$$

Basically, for this problem, we want to find the absolute minimum of d on the surface $y^{2}=9+x z$. To avoid the square root, we can minimize the function $L=d^{2}=$ $x^{2}+y^{2}+z^{2}$ instead.
We want to eliminate one variable in L. We have $y^{2}=9+x z$. So, we get $L(x, z)=$ $x^{2}+(9+x z)+z^{2}$. Now, let's find the critical point(s) for L :

$$
\left\{\begin{array}{l}
L_{x}=2 x+z=0 \tag{1}\\
L_{z}=x+2 z=0
\end{array}\right.
$$

Solving the above system of equation we get $x=0$ and $z=0$. So, the only critical point is $(0,0)$. Now, we use the Second Derivative test to classify this critical point:

$$
D(x, z)=\left(L_{x x}\right)\left(L_{z z}\right)-\left(L_{x z}\right)^{2}=2 \cdot 2-1^{2}=3>0 .
$$

So, $D(0,0)=3>0$ and $L_{x x}(0,0)=2>0$. And since $(0,0)$ is the only critical point of $L(x, z)$, we get that at $(0,0), L$ attains an absolute minimum.
To get the points we want, we need to find y when $x=0=z$. From the equation $y^{2}=9+x z$, we get $y= \pm 3$. Finally, the points on the surface $y^{2}=9+x z$ that are closest to the origin is $(0,-3,0)$ and $(0,3,0)$.

