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M20550 Calculus III Tutorial
Worksheet 6

1. Write an equation of the tangent line to the curve of intersection between the two surfaces
defined by z = x2 + y2 and x2 + 2y2 + z2 = 7 at the point (−1, 1, 2).

Hint: Think about the geometry of the gradient vectors. You don’t have to parametrize
the curve to do this problem.

Solution: The surface z = x2 + y2 can be written as the level surface F (x, y, z) =
x2 + y2 − z = 0; and so the gradient of F is

∇F (x, y, z) = 〈2x, 2y,−1〉 .

Also, the gradient of the level surface G(x, y, z) = x2 + 2y2 + z2 = 7 is

∇G(x, y, z) = 〈2x, 4y, 2z〉 .

The tangent vector at (−1, 1, 2) of the curve of intersection between these two surfaces
is perpendicular to both vectors ∇F (−1, 1, 2) = 〈−2, 2,−1〉 and ∇G(−1, 1, 2) =
〈−2, 4, 4〉. And

∇F (−1, 1, 2)×∇G(−1, 1, 2) = 〈−2, 2,−1〉 × 〈−2, 4, 4〉 = 〈12, 10,−4〉 .

Thus, 〈12, 10,−4〉 is a parallel vector of the tangent line to the curve of intersection
at (−1, 1, 2). Thus, an equation of the required tangent line is

〈x, y, z〉 = 〈−1, 1, 2〉+ t 〈12, 10,−4〉 .

2. Find the tangent plane and the normal line to the surface x2y+xz2 = 2y2z at the point
P = (1, 1, 1).

Solution: The given surface is the zero level surface of the function F (x, y, z) =
x2y + xz2 − 2y2z. So, the normal vector to the tangent plane at the point P (1, 1, 1)
is given by ∇F (1, 1, 1). We have

∇F (x, y, z) = 〈2xy + z2, x2 − 4yz, 2xz − 2y2〉 =⇒ ∇F (1, 1, 1) = 〈3,−3, 0〉.
Thus, the equation of the tangent plane at (1, 1, 1) is

3(x− 1)− 3(y − 1) = 0 =⇒ x− y = 0,

and the equation for the normal line at (1, 1, 1) is

〈x, y, z〉 = 〈1, 1, 1〉+ t〈3,−3, 0〉 = 〈1 + 3t, 1− 3t, 1〉.
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3. Find a point on the surface z = x2 − y3 where the tangent plane is parallel to the plane
x+ 3y + z = 0.

Solution: First, rewrite z = x2−y3 into the level surface F (x, y, z) = z−x2 +y3 =
0 then ∇F (x, y, z) = 〈−2x, 3y2, 1〉 . Since we want a point (x, y, z) such that the
tangent plane at this point is parallel to the plane x+3y+z = 0, we can have x, y, z
satisfy:〈
−2x, 3y2, 1

〉
= 〈1, 3, 1〉 where 〈1, 3, 1〉 is a normal vector of x+ 3y + z = 0.

Thus, we get −2x = 1 =⇒ x = −1

2
, and 3y2 = 3 =⇒ y = ±1. We only need

one point so pick y = 1 and with x = −1

2
, we get z =

(
−1

2

)2

− (1)3 = −3

4
. So,(

−1

2
, 1,−3

4

)
is one point we’re looking for.

4. Find all the critical points of f(x, y) = y3 + 3x2y − 6x2 − 6y2 + 2.

Solution: We want to find all points such that fx(x, y) = 0 and fy(x, y) = 0. We
have {

fx(x, y) = 6xy − 12x = 0 (1)

fy(x, y) = 3y2 + 3x2 − 12y = 0 (2)

Equation (1) implies 6x(y − 2) = 0 =⇒ x = 0 or y = 2.

• When x = 0, equation (2) is equivalent to 3y2 − 12y = 0 =⇒ 3y(y − 4) =
0 =⇒ y = 0 or y = 4. So, we get the points (0, 0) and (0, 4).

• When y = 2, equation (2) is equivalent to 12 + 3x2 − 24 = 0 =⇒ x2 = 4 =⇒
x = −2 or x = 2. So, we get the points (−2, 2) and (2, 2) here.

Thus, all the critical points of f are (0, 0), (0, 4), (−2, 2), (2, 2).

5. Find the local maximum and the local minimum value(s) and saddle point(s) of the
function z = x3 + y3 − 3xy + 1.

Solution: First, let’s find all the critical points of z = x3 + y3 − 3xy + 1:
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{
zx(x, y) = 3x2 − 3y = 0 =⇒ y = x2 (1)

zy(x, y) = 3y2 − 3x = 0 (2)

With y = x2, equation (2) becomes 3x4 − 3x = 0 =⇒ 3x(x3 − 1) = 0 =⇒ x =
0 or x = 1. Thus, all the critical points are (0, 0) and (1, 1).

Now, we will use the Second Derivative Test to test each critical point. We want to
compute

D(x, y) =

∣∣∣∣zxx zxy
zyx zyy

∣∣∣∣ = zxxzyy − z2xy = (6x)(6y)− (−3)2 = 36xy − 9.

And we have
D(0, 0) = −9 < 0 =⇒ (0, 0) is a saddle point.

D(1, 1) = 36− 9 > 0 and zxx(1, 1) = 6 > 0 =⇒ z(1, 1) is a local minimum.

In conclusion, the local minimum value of z is z(1, 1) = 13 + 13 − 3(1)(1) + 1 = 0.
And (0, 0) is the saddle point of z, i.e. z(0, 0) is neither a local minimum nor local
maximum.

6. Identify the absolute maximum and absolute minimum values attained by g(x, y) =
x2y − 2x2 within the triangle T bounded by the points P (0, 0), Q(2, 0), and R(0, 4).

Solution: The picture for the triangle T :

First, we find all critical points in the interior of the triangle:{
gx(x, y) = 2xy − 4x = 0 (1)

gy(x, y) = x2 = 0 (2)
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Equation (2) tells us that x must be zero. And when x = 0, equation (1) is true
automatically giving us the points (0, y) for 0 ≤ y ≤ 4 are the solutions of this
system of equations. So, all the critical points are exactly the boundary PR of the
triangle. So, we get no critical point inside the triangle. We move on to analyze the
boundaries.

On the boundary PR, we have x = 0 and 0 ≤ y ≤ 4. And, g(0, y) = 0.

On the boundary PQ, we have 0 ≤ x ≤ 2 and y = 0. And, g(x, 0) = −2x2. The
graph of −2x2 is a parabola concaves downward. So, g(x, 0) = −2x2 with 0 ≤ x ≤ 2
attains a maximum value of 0 when x = 0 and a minimum value of −8 when x = 2.

On the boundary QR, we have y = −2x + 4 with 0 ≤ x ≤ 2. And, g(x,−2x + 4) =
x2(−2x+ 4)− 2x2 = −2x3 + 2x2, for 0 ≤ x ≤ 2. The critical numbers of −2x3 + 2x2

for 0 ≤ x ≤ 2 are x = 0 and x =
2

3
. So, g has a minimum of 0 at x = 0 and a

maximum of
8

27
at x =

2

3
, y =

8

3
on this boundary.

Here is a summary of the results:

(x, y) g(x, y)
(0, y) 0

(2, 0) −8(
2

3
,
8

3

)
8

27

So, we conclude that on the whole triangle (including boundaries), the function has

an absolute maximum of
8

27
at

(
2

3
,
8

3

)
and an absolute minimum of −8 at (2, 0).

7. Identify the absolute maximum and absolute minimum values attained by z = 4x2−y2+1
within the region R bounded by the curve 4x2 + y2 = 16.

Solution: First, we find the critical points in the interior of the region R. We have{
zx(x, y) = 8x = 0 =⇒ x = 0

zy(x, y) = −2y = 0 =⇒ y = 0

So, the only critical point inside R is (0, 0).

Move on to the boundary 4x2 + y2 = 16. Note that this is the ellipse
x2

22
+
y2

42
= 1.

On this boundary, we have y2 = 16 − 4x2 and −2 ≤ x ≤ 2. So, we get z =



Name: SOLUTIONS Date: 10/06/2016

4x2 − (16− 4x2) + 1 = 8x2 − 15 for −2 ≤ x ≤ 2. The critical number here satisfies
16x = 0 =⇒ x = 0. With x = 0, y2 = 16 − 4 · 02 =⇒ y = ±4. So, the critical
points on the boundary are (0,−4) and (0, 4). And the end points here are (−2, 0)
and (2, 0).

Finally, let’s compute the values of z at all the points of “interest”:

(x, y) z = 4x2 − y2 + 1
(0, 0) 1

(0,−4) −15

(0, 4) −15

(−2, 0) 17

(2, 0) 17

In conclusion, the absolute maximum value of z is 17 and it occurs at the points
(−2, 0) and (2, 0). The absolute minimum value of z is −15 and it occurs at the
points (0,−4) and (0, 4).

Another way of finding extrema on the boundary is to use the method of Lagrange
Multipliers. In this language, we want to find the extrema of z = 4x2−y2+1 subject
to the constraint g(x, y) = 4x2 + y2 = 16. We have ∇z = λ∇g for some constant λ.
So, we get the system of equations:

8x = λ8x (1)

−2y = λ2y (2)

4x2 + y2 = 16 (3)

Equation (1) ⇔ 8x(1− λ) = 0 =⇒ x = 0 or λ = 1.

• If x = 0, then from equation (3) we get y = ±4. And so we get (0,±4) as the
points of interest.

• If λ = 1, then from equation (2) we get y = 0. With y = 0, equation (3) gives
x = ±2. So, the points of interest are (±2, 0).

Then, we can create the table like we did above to find the absolute max and min of
z.
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8. Find the point(s) on the surface y2 = 9 + xz that are closest to the origin.

Solution: The distance between any point (x, y, z) on the given surface to the origin
is given by

d =
√
x2 + y2 + z2.

Basically, for this problem, we want to find the absolute minimum of d on the surface
y2 = 9 + xz. To avoid the square root, we can minimize the function L = d2 =
x2 + y2 + z2 instead.

We want to eliminate one variable in L. We have y2 = 9 + xz. So, we get L(x, z) =
x2 + (9 + xz) + z2. Now, let’s find the critical point(s) for L:{

Lx = 2x+ z = 0 (1)

Lz = x+ 2z = 0 (2)

Solving the above system of equation we get x = 0 and z = 0. So, the only critical
point is (0, 0). Now, we use the Second Derivative test to classify this critical point:

D(x, z) = (Lxx)(Lzz)− (Lxz)
2 = 2 · 2− 12 = 3 > 0.

So, D(0, 0) = 3 > 0 and Lxx(0, 0) = 2 > 0. And since (0, 0) is the only critical point
of L(x, z), we get that at (0, 0), L attains an absolute minimum.

To get the points we want, we need to find y when x = 0 = z. From the equation
y2 = 9 + xz, we get y = ±3. Finally, the points on the surface y2 = 9 + xz that are
closest to the origin is (0,−3, 0) and (0, 3, 0).


