M20550 Calculus III Tutorial Worksheet 9

1. Compute $\iint_{R} \frac{1}{2} d A$ where R is the region bounded by $2 x^{2}+2 x y+y^{2}=8$ using the change of variables given by $x=u+v$ and $y=-2 v$.

Solution: We know R is the region bounded by $2 x^{2}+2 x y+y^{2}=8$. Using the transformation $x=u+v$ and $y=-2 v$, the boundary $2 x^{2}+2 x y+y^{2}=8$ will turn into

$$
\begin{gathered}
2(u+v)^{2}+2(u+v)(-2 v)+(-2 v)^{2}=8 . \\
\Longrightarrow u^{2}+v^{2}=4 .
\end{gathered}
$$

So, the transformation of R, denote S, is the region bounded by the circle $u^{2}+v^{2}=4$ in the $u v$-plane.

Before proceeding to compute the double integral, we need to find the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right|=(1)(-2)-(1)(0)=-2 .
$$

Thus,

$$
\begin{aligned}
\iint_{R} \frac{1}{2} d A & =\iint_{S} \frac{1}{2}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \frac{1}{2}|-2| r d r d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{1}{2} r^{2}\right|_{r=0} ^{r=2} d \theta \\
& =\int_{0}^{2 \pi} 2 d \theta \\
& =4 \pi
\end{aligned}
$$

2. Let R be the parallelogram enclosed by the lines $x+3 y=0, x+3 y=2, x+y=1$, and $x+y=4$. Evaluate the following integral by making appropriate change of variables

$$
\iint_{R} \frac{x+3 y}{(x+y)^{2}} d A
$$

Solution: Observe the set of equations:

$$
\begin{array}{rlrl}
x+3 y & =0 & x+3 y & =2 \\
x+y & =1 & x+y & =4
\end{array}
$$

So, if we let

$$
u=x+3 y \quad \text { and } v=x+y
$$

then the transformation of R, denote S, is given by the region bounded by the lines

$$
\begin{array}{ll}
u=0 & u=2 \\
v=1 & v=4
\end{array}
$$

So, S is the region bounded by the rectangle $[0,2] \times[1,4]$ in the $u v$-plane.
Next, we need to compute the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

In order to compute these partials, we need to write x and y in terms of u and v. We have

$$
\begin{aligned}
& x+3 y=u \quad(e q 1) \\
& x+y=v \\
&(e q ~ 2)
\end{aligned}
$$

$(e q 1)-(e q 2)$ is equivalent to $2 y=u-v \Longrightarrow y=\frac{1}{2} u-\frac{1}{2} v$. And (eq 1) $-3(e q 2)$ gives $-2 x=u-3 v \Longrightarrow x=-\frac{1}{2} u+\frac{3}{2} v$. So,

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
-\frac{1}{2} & \frac{3}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)-\left(\frac{3}{2}\right)\left(\frac{1}{2}\right)=-\frac{1}{2}
$$

And so, we get

$$
\begin{aligned}
\iint_{R} \frac{x+3 y}{(x+y)^{2}} d A & =\iint_{S} \frac{u}{v^{2}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A \\
& =\int_{1}^{4} \int_{0}^{2} \frac{u}{v^{2}}\left|-\frac{1}{2}\right| d u d v \\
& =\left.\int_{1}^{4} \frac{1}{4} u^{2} v^{-2}\right|_{u=0} ^{u=2} d v \\
& =\int_{1}^{4} v^{-2} d v \\
& =-\left.\frac{1}{v}\right|_{1} ^{4}=-\frac{1}{4}+1=\frac{3}{4}
\end{aligned}
$$

3. Evaluate the line integral $\int_{C}(z-2 x y) d s$ along the curve C given by $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$, $0 \leq t \leq \frac{\pi}{2}$.

Solution: $\int_{C}(z-2 x y) d s$ is a line integral with respect to arc length (because of the $d s$ at end). Since $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$, we get $x(t)=\sin t, y(t)=\cos t, z(t)=t$. So, $z-2 x y=t-2 \sin t \cos t$. And $\mathbf{r}^{\prime}(t)=\langle\cos t,-\sin t, 1\rangle$. So,

$$
d s=\left|\mathbf{r}^{\prime}(t)\right| d t=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}} d t=\sqrt{\cos ^{2} t+(-\sin t)^{2}+1^{2}}=\sqrt{2} d t
$$

Thus, for $0 \leq t \leq \frac{\pi}{2}$,

$$
\begin{aligned}
\int_{C}(z-2 x y) d s & =\int_{0}^{\pi / 2}(t-2 \sin t \cos t) \sqrt{2} d t \\
& =\sqrt{2}\left[\frac{1}{2} t^{2}-\sin ^{2} t\right]_{0}^{\pi / 2} \\
& =\sqrt{2}\left[\frac{\pi^{2}}{8}-1\right] .
\end{aligned}
$$

4. Find $\int_{C} 2 x y^{3} d s$ where C is the upper half of the circle $x^{2}+y^{2}=4$.

Solution: First, let's parametrize the curve $C . C$ is the upper half of the circle $x^{2}+y^{2}=4$. So, we can let

$$
x(t)=2 \cos t, \quad y(t)=2 \sin t \quad \text { for } 0 \leq t \leq \pi
$$

Then, $x^{\prime}(t)=-2 \sin t$ and $y^{\prime}(t)=2 \cos t$. Therefore,

$$
d s=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t=\sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}}=\sqrt{4 \sin ^{2} t+4 \cos ^{2} t}=2 d t
$$

Thus, for $0 \leq t \leq \pi$,

$$
\begin{aligned}
\int_{C} 2 x y^{3} d s & =\int_{0}^{\pi} 2(2 \cos t)(2 \sin t)^{3} 2 d t \\
& =\int_{0}^{\pi} 32\left(\sin ^{3} t\right)(\cos t) d t \\
& =8\left[\sin ^{4} t\right]_{0}^{\pi} \\
& =0
\end{aligned}
$$

5. Calculate the line integral $\int_{C}\left(y^{2}+x\right) d x+4 x y d y$ where C is the arc of $x=y^{2}$ from $(1,1)$ to $(4,2)$.

Solution: First, we need to parametrize the curve C. Since C is a part of the curve $x=y^{2}$, we can let $y=t$; then we have $x=t^{2}$. Moreover, since the curve C is
the part from $(1,1)$ to $(4,2)$, we get $1 \leq y \leq 2$. So, we have $1 \leq t \leq 2$. Thus, a parametrization of C is as follows:

$$
x(t)=t^{2}, \quad y(t)=t \quad \text { for } 1 \leq t \leq 2 .
$$

Now, $\int_{C}\left(y^{2}+x\right) d x+4 x y d y$ is a line integral with respect to x and y because we see the $d x$ and $d y$. Here,

$$
d x=x^{\prime}(t) d t=2 t d t \quad \text { and } \quad d y=y^{\prime}(t) d t=1 d t .
$$

So, for $1 \leq t \leq 2$,

$$
\begin{aligned}
\int_{C}\left(y^{2}+x\right) d x+4 x y d y & =\int_{1}^{2}\left[\left(t^{2}+t^{2}\right) 2 t+4\left(t^{2}\right)(t)\right] d t \\
& =\int_{1}^{2} 8 t^{3} d t \\
& =\left[2 t^{4}\right]_{1}^{2} \\
& =2^{5}-2=30
\end{aligned}
$$

6. Evaluate the line integral $\int_{C} z^{2} d x+x d y+y d z$ where C is the line segment from $(1,0,0)$ to $(4,1,2)$.

Solution: First, we parametrize C, the line segment from $(1,0,0)$ to $(4,1,2)$. For $0 \leq t \leq 1, C$ can be written as the vector function

$$
\mathbf{r}(t)=\langle 1,0,0\rangle+t(\langle 4,1,2\rangle-\langle 1,0,0\rangle)=\langle 1,0,0\rangle+t\langle 3,1,2\rangle
$$

So, $x(t)=1+3 t, y(t)=t$, and $z(t)=2 t$ for $0 \leq t \leq 1$. Then,

$$
d x=x^{\prime}(t) d t=3 d t, \quad d y=y^{\prime}(t) d t=1 d t, \quad d z=z^{\prime}(t) d t=2 d t .
$$

Hence, for $0 \leq t \leq 1$,

$$
\begin{aligned}
\int_{C} z^{2} d x+x d y+y d z & =\int_{0}^{1}\left[(2 t)^{2}(3)+(1+3 t)(1)+t(2)\right] d t \\
& =\int_{0}^{1}\left[12 t^{2}+5 t+1\right] d t \\
& =\left[4 t^{3}+\frac{5}{2} t^{2}+t\right]_{0}^{1} \\
& =\frac{15}{2}
\end{aligned}
$$

7. Compute $\int_{C} x^{2} d s$ where C is the intersection of the surface $x^{2}+y^{2}+z^{2}=4$ and the plane $z=\sqrt{3}$.

Solution: The intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $z=\sqrt{3}$ is the circle

$$
\begin{gathered}
x^{2}+y^{2}+(\sqrt{3})^{2}=4, \quad z=\sqrt{3} \\
\text { or simply } \quad x^{2}+y^{2}=1, \quad z=\sqrt{3}
\end{gathered}
$$

Thus, a parametrization of C could be

$$
\mathbf{r}(t)=\langle\cos t, \sin t, \sqrt{3}\rangle \quad \text { for } 0 \leq t \leq 2 \pi
$$

Then, $\mathbf{r}^{\prime}(t)=\langle-\sin t, \cos t, 0\rangle \Longrightarrow\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(-\sin t)^{2}+\cos ^{2} t}=1$. So $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=1 d t$. Finally, for $0 \leq t \leq 2 \pi$,

$$
\begin{aligned}
\int_{C} x^{2} d s & =\int_{0}^{2 \pi}\left(\cos ^{2} t\right) d t \\
& =\int_{0}^{2 \pi} \frac{1}{2}(1+\cos 2 t) d t \\
& =\frac{1}{2}\left[t+\frac{1}{2} \sin (2 t)\right]_{0}^{2 \pi} \\
& =\pi
\end{aligned}
$$

