M20550 Calculus III Tutorial Worksheet 2

1. Find an equation of the plane passes through the point $(1,1,-7)$ and perpendicular to the line $x=1+4 t, y=1-t, z=-3$.
2. Let ℓ be the line of intersection of the planes given by equations $x-y=1$ and $x-z=1$. Find an equation for ℓ in the form $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.
3. A particle moves in space in such a way that at time $t(t \geq 0)$, its position is given by the vector-valued function $\mathbf{r}(t)=\left\langle t^{2}+1,2 t^{2}-1,2-3 t^{2}\right\rangle$.
(a) At what time(s) does the particle hit the plane $2 x+2 y+3 z=3$?
(b) Find the point of intersection, if any.
4. Find an equation of the tangent line to the space curve $\mathbf{r}(t)=\left\langle 2 t^{3}, 3 t, 3 t^{2}\right\rangle$ at the point $(-2,-3,3)$.
5. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime \prime}(t)=e^{t} \mathbf{i}, \mathbf{r}(0)=2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$, and $\mathbf{r}^{\prime}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
6. Let P be a plane with normal vector $\langle-2,2,1\rangle$ passing through the point $(1,1,1)$. Find the distance from the point $(1,2,-5)$ to the plane P.
7. Find an equation of the plane that passes through the point $(1,2,3)$ and contains the line $\frac{1}{3} x=y-1=2-z$.
8. Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=9$ and the plane $x+y-z=5$.
