M20550 Calculus III Tutorial Worksheet 4

1. Find and sketch the domain of the function

$$
f(x, y)=\frac{\ln \left(x^{2}+4 y^{2}-4\right)}{9-x^{2}}
$$

2. Select the correct graph and the correct contour plot of level curves for the function

$$
f(x, y)=x^{2}-y^{2}
$$

I.

B.

III.

(b) I and A
(c) II and A
(a) I and B
(e) III and C
3. Evaluate the following limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y+x e^{-y^{2}}}{1+x^{2}}
$$

4. Show that the following limit does not exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}
$$

5. Find the second partial derivative $g_{x y}$ of the function

$$
g(x, y)=x^{3} y^{2}+e^{x y}
$$

6. Let $z=z(x, y)$ be defined implicitly as a function of x and y by the equation

$$
x^{2} e^{y}=-z \cos (y z)
$$

Find $\frac{\partial z}{\partial x}$ at the point $x=1, y=0$, and $z=-1$.
7. The graph of f is shown below

Determine the sign of
(a) $f_{x}(1,2)$
(b) $f_{y}(1,2)$
(c) $f_{x}(-1,2)$
(d) $f_{y}(-1,2)$
8. The paraboloid $z=6-x-x^{2}-2 y^{2}$ intersects the plane $x=1$ in a parabola. Use the geometry of partial derivative to find the slope for the tangent line to this parabola at the point $(1,2,-4)$.
9. Here is a challenge: Refer to the graph of f in number 7 , what is the sign of $f_{x x}(1,2)$?

