M20550 Calculus III Tutorial Worksheet 5

1. Find $\frac{d z}{d t}$ when $t=2$, where $z=x^{2}+y^{2}-2 x y, x=\ln (t-1)$ and $y=e^{-t}$.
2. (a) Let $f(x, y, z)=x^{2}-y z$. If $\mathbf{v}=\langle 1,1,0\rangle$, find the directional derivative of f in the direction of \mathbf{v} at the point $(1,2,3)$.
(b) Interpret your result in part (a) by filling in the blanks and circling the correct word of the statement below:

At the point \qquad , the value of the function f is increasing / decreasing at the rate of \qquad as we move in the direction given by the vector \qquad .
3. Let $f(x, y)=\ln (x y)$. Find the maximum rate of change of f at $(1,2)$ and the direction in which it occurs.
4. If $h=x^{2}+y^{2}+z^{2}$ and $y \cos z+z \cos x=0$, find $\frac{\partial h}{\partial x}$ assuming that x and y are the independent variables.
5. A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$, calculate the rate at which the radius is changing when the radius is 2 m and the length is 1 m . (Note: An incompressible fluid is a fluid whose volume does not change.)
6. Let $r=r(x, y), x=x(s, t)$, and $y=y(t)$. Given that

$$
\begin{array}{lll}
x(1,0)=2, & x_{s}(1,0)=-1, & x_{t}(1,0)=7 \\
y(0)=3, & y(1)=0 & y^{\prime}(0)=4 \\
r(2,3)=-1, & r_{x}(2,3)=3, & r_{y}(2,3)=5 \\
r_{x}(1,0)=6, & r_{y}(1,0)=-2, &
\end{array}
$$

calculate $\frac{\partial r}{\partial t}$ at $s=1, t=0$.
7. Suppose that over a certain region of space the electrical potential V is given by

$$
V(x, y, z)=5 x^{2}-3 x y+x y z .
$$

(a) Find the rate of change of the potential at $P(1,1,0)$ in the direction of the vector $\mathbf{v}=\mathbf{i}+\mathbf{j}-\mathbf{k}$.
(b) In which direction does V decrease most rapidly at P ?
(c) What is the maximum rate of change at P ?
8. Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+$ $y^{2}-2 x-4 y$ is $\mathbf{i}+\mathbf{j}$.
9. (a) Find an equation for the tangent line (in vector or parametric form) at the point $(2,2,1)$ to the curve of intersection of the two surfaces $g(x, y, z)=2 x^{2}+2 y^{2}+z^{2}=17$ and $h(x, y, z)=x^{2}+y^{2}-3 z^{2}=5$.
(b) Suppose $f(x, y, z)$ is a function with $\nabla f=\langle 1,0,0\rangle$ at the point $(2,2,1)$. Starting at $(2,2,1)$, which direction should one travel along the curve of intersection in order to increase f ? (Note: You can give a tangent vector to the curve at $(2,2,1)$ that points in the desired direction.)

