M20550 Calculus III Tutorial Worksheet 7

1. Find the minimum distance from the parabola $y=x^{2}$ to the point $(0,9)$.
2. Maximize the function $f(x, y, z)=x y z$ subject to the constraint $x^{2}+2 y^{2}+3 z^{2}=9$, assuming that x, y, and z are nonnegative. Explain why the extremum you find is a maximum.
3. Minimize the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraints $x+2 z=6$ and $x+y=12$ using the method of Lagrange multipliers. Also, explain why the extremum you find is a minimum.
4. Find the maximum value of the function $f(x, y, z)=x+2 y$ on the curve of intersection of the plane $x+y+z=1$ and the cylinder $y^{2}+z^{2}=4$.
5. Find the volume of the solid S bounded by the surface $z=x e^{x y}$, the planes $x=2$ and $y=1$, and the three coordinate planes (i.e. the planes $x=0, y=0, z=0$).
