M20550 Calculus III Tutorial Worksheet 8

1. Evaluate the given integral.

$$\iint_{R} \arctan\left(\frac{y}{x}\right) \, dA$$

where $R = \{(x, y) : 1 \le x^2 + y^2 \le 4, 0 \le y \le x\}.$

2. (a) Let E_1 be the solid lies under the plane z = 1 and above the region in the *xy*-plane bounded by x = 0, y = 0, and 2x + y = 2. Write the triple integral $\iiint_{E_1} xz \, dV$ but do not evaluate it.

(b) Let E_2 be the solid region in the first octant that lies under the paraboloid $z = 2 - x^2 - y^2$. Write the triple integral $\iiint_{E_2} xz \, dV$ in cylindrical coordinates (you don't need to evaluate it).

(c) Let E_3 be the solid region that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the plane z = 2. Write the triple integral $\iiint_{E_3} xz \, dV$ in spherical coordinates (you don't need to evaluate it).

- 3. Write the integral that computes the volume of the part of the solid cylinder $x^2 + y^2 \le 1$ that lies between the planes z = 0 and z = 2 y.
- 4. Set up, but do not solve, the integral that gives the volume of the solid region bounded by the paraboloid $z = 3y^2 + 3x^2$ and the cone $z = 4 \sqrt{x^2 + y^2}$.
- 5. Find the mass of the solid between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ whose density is $\rho(x, y, z) = x^2 + y^2 + z^2$.
- 6. Find the center of mass of the solid S bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 1 if S has constant density 1 and total mass $\frac{\pi}{2}$. (Hint: \bar{x} and \bar{y} can be found by symmetry).