M20550 Calculus III Tutorial Worksheet 8

1. Evaluate the given integral.

$$
\iint_{R} \arctan \left(\frac{y}{x}\right) d A
$$

where $R=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}$.
2. (a) Let E_{1} be the solid lies under the plane $z=1$ and above the region in the $x y$-plane bounded by $x=0, y=0$, and $2 x+y=2$. Write the triple integral $\iiint_{E_{1}} x z d V$ but do not evaluate it.
(b) Let E_{2} be the solid region in the first octant that lies under the paraboloid $z=2-x^{2}-y^{2}$. Write the triple integral $\iiint_{E_{2}} x z d V$ in cylindrical coordinates (you don't need to evaluate it).
(c) Let E_{3} be the solid region that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=2$. Write the triple integral $\iiint_{E_{3}} x z d V$ in spherical coordinates (you don't need to evaluate it).
3. Write the integral that computes the volume of the part of the solid cylinder $x^{2}+y^{2} \leq 1$ that lies between the planes $z=0$ and $z=2-y$.
4. Set up, but do not solve, the integral that gives the volume of the solid region bounded by the paraboloid $z=3 y^{2}+3 x^{2}$ and the cone $z=4-\sqrt{x^{2}+y^{2}}$.
5. Find the mass of the solid between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ whose density is $\rho(x, y, z)=x^{2}+y^{2}+z^{2}$.
6. Find the center of mass of the solid S bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$ if S has constant density 1 and total mass $\frac{\pi}{2}$. (Hint: \bar{x} and \bar{y} can be found by symmetry).

