M20550 Calculus III Tutorial Worksheet 9

1. Compute $\iint_{R} \frac{1}{2} d A$ where R is the region bounded by $2 x^{2}+2 x y+y^{2}=8$ using the change of variables given by $x=u+v$ and $y=-2 v$.
2. Let R be the parallelogram enclosed by the lines $x+3 y=0, x+3 y=2, x+y=1$, and $x+y=4$. Evaluate the following integral by making appropriate change of variables

$$
\iint_{R} \frac{x+3 y}{(x+y)^{2}} d A
$$

3. Evaluate the line integral $\int_{C}(z-2 x y) d s$ along the curve C given by $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$, $0 \leq t \leq \frac{\pi}{2}$.
4. Find $\int_{C} 2 x y^{3} d s$ where C is the upper half of the circle $x^{2}+y^{2}=4$.
5. Calculate the line integral $\int_{C}\left(y^{2}+x\right) d x+4 x y d y$ where C is the arc of $x=y^{2}$ from $(1,1)$ to $(4,2)$.
6. Evaluate the line integral $\int_{C} z^{2} d x+x d y+y d z$ where C is the line segment from $(1,0,0)$ to $(4,1,2)$.
7. Compute $\int_{C} x^{2} d s$ where C is the intersection of the surface $x^{2}+y^{2}+z^{2}=4$ and the plane $z=\sqrt{3}$.
