M20550 Calculus III Tutorial
 Worksheet 10

1. Determine whether or not the following vector fields are conservative:
(a) $\mathbf{F}=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$
(b) $\mathbf{F}=\mathbf{i}+\sin z \mathbf{j}+y \cos z \mathbf{k}$
2. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left(y^{2} \cos \left(x y^{2}\right)+3 x^{2}\right) \mathbf{i}+\left(2 x y \cos \left(x y^{2}\right)+2 y\right) \mathbf{j}$ is a conservative vector field and C is any curve from the point $(-1,0)$ to $(1,0)$.
3. Use Green's Theorem to evaluate

$$
\int_{C}\left(-\frac{y^{3}}{3}+\sin x\right) d x+\left(\frac{x^{3}}{3}+y\right) d y
$$

where C is the circle of radius 1 centered at $(0,0)$ oriented counterclockwise when viewed from above.
4. Write an equation of the tangent plane to the parametric surface

$$
x=u^{2}+1, \quad y=v^{3}+1, \quad z=u+v
$$

at the point $(5,2,3)$.
5. Write the integral that computes the surface area of the surface S parametrized by $\mathbf{r}(u, v)=\left\langle u^{2} \cos v, u^{2} \sin v, v\right\rangle$, where $0 \leq u \leq 1$ and $0 \leq v \leq \pi$.
6. Find the surface area of the part of the cylinder $x^{2}+y^{2}=4$ that lies between the planes $z=0$ and $z=2$.
7. Find the area of the part of the paraboloid $z=x^{2}+y^{2}$ which lies inside the cylinder $x^{2}+y^{2}=1$.
8. (a) Compute div \mathbf{F}, where $\mathbf{F}=\left\langle e^{y}, z y, x y^{2}\right\rangle$.
(b) Is there a vector field \mathbf{G} on \mathbb{R}^{3} such that $\operatorname{curl} \mathbf{G}=\left\langle x y z,-y^{2} z, y z^{2}\right\rangle$? Why?

