M20550 Calculus III Tutorial
 Worksheet 11

1. Compute the surface integral $\iint_{S}(x+y+z) d S$, where S is a surface given by $\mathbf{r}(u, v)=\langle u+v, u-v, 1+2 u+v\rangle$ and $0 \leq u \leq 2,0 \leq v \leq 1$.
2. Let S be the portion of the graph $z=4-2 x^{2}-3 y^{2}$ that lies over the region in the $x y$-plane bounded by $x=0, y=0$, and $x+y=1$. Write the integral that computes $\iint_{S}\left(x^{2}+y^{2}+z\right) d S$.
3. Compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ and S is a surface given by

$$
x=2 u, \quad y=2 v, \quad z=5-u^{2}-v^{2}
$$

where $u^{2}+v^{2} \leq 1 . S$ has downward orientation.
4. Compute the flux of the vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ over the part of the cylinder $x^{2}+y^{2}=4$ that lies between the planes $z=0$ and $z=2$ with normal pointing away from the origin.
5. Let S be the surface defined as $z=4-4 x^{2}-y^{2}$ with $z \geq 0$ and oriented upward. Let $\mathbf{F}=\left\langle x-y, x+y, z e^{x y}\right\rangle$. Compute $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$. (Hint: use one of the theorems you learned in class.)
6. Evaluate $\int_{C}\left(x^{4} y^{5}-2 y\right) d x+\left(3 x+x^{5} y^{4}\right) d y$ where C is the curve below and C is oriented in clockwise direction.

7. Let S be the boundary surface of the region bounded by $z=\sqrt{36-x^{2}-y^{2}}$ and $z=0$, with outward orientation. Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=x \mathbf{i}+y^{2} \mathbf{j}-2 y z \mathbf{k}$.
8. (A Challenging Problem) Evaluate

$$
\int_{C}\left(y^{3}+\cos x\right) d x+\left(\sin y+z^{2}\right) d y+x d z
$$

where C is the closed curve parametrized by $\mathbf{r}(t)=\langle\cos t, \sin t, \sin 2 t\rangle$ with counterclockwise direction when viewed from above. (Hint: the curve C lies on the surface $z=2 x y$.)

