
Thickenings of Z/nZ–manifolds and remarks on codimension two submanifolds

Laurence R. Taylor

Thickenings of CW complexes were formalized by Wall, [12]: a thickening of a finite CW complex,
K, is a manifold W and a simple homotopy equivalence f :K → W . The thickening is orientable, Spin,
or whatever provided W is. Morgan and Sullivan introduced Z/nZ–manifolds in [5]. The main point of
this note is the simple observation that Z/nZ–manifolds have explicit, orientable thickenings of the smallest
dimension possible.

Recall that a Z/nZ–manifold is an oriented manifold with boundary M with ∂M divided into n

pieces, ∂M =
n
∪

j=1
(∂M)j , together with another manifold δM and n orientation preserving diffeomorphisms

dj : (∂M)j → δM . We leave to the reader the straightforward generalization to PL or TOP manifolds. The
Z/nZ–manifold itself is the CW complex obtained from this data by using the disjoint union of the dj to
obtain a map d: ∂M → δM and then setting M/δM to be the union of M and the mapping cylinder of d
along ∂M . We denote it by M/δM , suppressing the diffeomorphisms dj from the notation. The dimension
of the Z/nZ–manifold is the dimension of M . Morgan and Sullivan define a tangent bundle τM/δM for a
Z/nZ–manifold which is a bundle over M/δM . We recall the definition below.

The observation alluded to above can be summed up with

Theorem 1. A Z/nZ–manifold of dimension m has an orientable thickening of dimension m + 1,

ι:M/δM −→ W .

The simple homotopy equivalence ι is an embedding and ι∗(τW ) = τM/δM ⊕ ε where ε is the trivial line
bundle. Moreover, there is a map r: ∂W → M/δM so that W is the mapping cylinder of r and ι is the
standard inclusion of the range into the mapping cylinder.

Before beginning the proof, let us agree that the mapping cylinder of any map α:A → B is the quotient
space of A × [0, 1] disjoint union B identified by (a, 0) ∼ α(a). With this bit of notation, the proof of the
Theorem goes as follows. Let W =

(
M × [−1, 1]

)
∪
(
δM × D2

)
glued together as follows. Consider D2 as

the unit disk in the complex plane. Define n disjoint intervals in ∂D2 = S1, ej : [−1, 1] → S1, j = 1, . . . , n

by ej(t) =
2π(j+ t

4 )i

n . This puts the ej(0) at the nth roots of unity. Use dj × ej to embed (∂M)j × [−1, 1]
in δM × S1. This defines the gluing needed to construct W . It is straightforward to check that W is an
oriented smooth manifold with boundary.

To precisely describe the remaining structures, fix radial arcs, Tj : [0, 1] → D2 with Tj(t) = 2πjti
n =

t · ej(0). Define additional arcs Ej : [−1, 1] → S1 j = 1, . . . , n by Ej(t) =
2π(j+ 1

2+ t
4 )i

n . To simplify the
formulae to follow, let us agree that the subscript j in dj , ∂Mj , ej and so on, is defined mod n. So for
example ∂Mn+1 = ∂M1 and dn+1 = d1.

Define ι:M/δM → W by sending m ∈ M to m × 0 and the point m × t in the mapping cylinder,
m ∈ ∂Mj , to ∂Mj × t → δM × t · ej(0) using dj . It is an embedding.

Figure 2 shows the case n = 3 and shows δM × D2 with a bit of M × [−1, 1] glued to it along the
(∂M)j × [−1, 1]. The rest of M × [−1, 1] is left to the reader’s imagination. The bockstein is the dot at the
center and the image of ι is the union of the dotted radial lines. The images of the Ej are labelled.

The result should be clear from this figure, but here are some further details.
The boundary of W may be described roughly as taking two copies of M and gluing ∂Mj to ∂Mj+1 via

the evident diffeomorphism, a “shifted double” if you will. More precisely, construct a differentiable manifold
by taking two copies of M , M × {−1, 1} together with n copies of δM × [−1, 1] and gluing them together
as follows. The jth copy will be denoted δMj . Glue ∂Mj × 1 to δMj × −1 by dj and glue ∂Mj+1 × −1
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Figure 2

to δMj × 1 by dj+1. Let V denote the result and construct an embedding E:V → ∂W ⊂ W as follows.
Map M ×±1 ⊂ V to M ×±1 ⊂ W by the identity. Embed δMj × [−1, 1] in δM ×D2 by sending m× t to
m× Ej(t). Check that E defines a diffeomorphism between V and ∂W .

Define a map r̂:V → M/δM as follows: r̂(m × ±1) = m for all m ∈ M ; for all m ∈ δMj r̂(m × t) =
d−1
j (m)×−t in the mapping cylinder, −1 ≤ t ≤ 0; r̂(m×t) = d−1

j+1(m)×t for 0 ≤ t ≤ 1. Let r: ∂W → M/δM

be r̂ ◦ E−1. Check that r̂ is well–defined and continuous.

It will suffice to identify the mapping cylinder of r̂ rather than that of r. To identify the mapping
cylinder of r̂ with W , let Xn ⊂ D2 be the union of the Tj , j = 1, . . . , n. It is an n–spoked wheel and divides

the disk into n slices. Define maps Rj : [−1, 1] → Xn, j = 1, . . . , n by Rj(t) =

{
−t · ej(0) −1 ≤ t ≤ 0
t · ej+1(0) 0 ≤ t ≤ 1

and

let Yn denote the mapping cylinder of n disjoint copies of [−1, 1] using the disjoint union of the Rj . Choose a
homeomorphism ιn:Yn → D2 so that ιn restricted to Xn is the inclusion with which we started. We further
insist that ιn restricted to the jth copy of [−1, 1] is just Ej . Finally, we require that ιn restricted to the jth
copy of −1 × [0, 1] is just ιn(−1 × t) = ej(1 − t), j = 1, . . . , n; restricted to the jth copy of 1 × [0, 1] is just
ιn(1 × t) = ej+1(t− 1) j = 1, . . . , n− 1; restricted to the nth copy of 1 × [0, 1] is just ιn(1 × t) = e1(t− 1).
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Figure 3 shows one slice of the disk. The solid rays θ±1 denote two adjacent spokes of the wheel. The
solid arc of the circle is [−1, 1] mapped onto the circle by the appropriate Ej . The dotted lines represent
the mapping cylinder [0, 1] coordinate. As the picture illustrates, the identification of the mapping cylinder
with our slice can be chosen symmetric about the bisector θ0. We can then stack n of these slices together
to get the full disk.

Since a mapping cylinder has the simple homotopy type of its range, we have a thickening in the sense
of Wall.

We now turn to the tangent bundle result. Pick a cuspidal embedding of Xn in D2 instead of the
standard one and use this to get the cuspidal embedding of M/δM in W . (Figure 4 below illustrates the
two embeddings for X3. Compare with the illustration on p.474 of [5].) The subbundle of τW consisting
of vectors tangent to the image is the Morgan–Sullivan tangent bundle to M/δM . There is an evident one
dimensional normal bundle which is orientable. Orient it so that on the S1 it give the usual orientation.
With this convention, orientations of W are in bijection with orientations of M/δM .

Remark: Recall that Z/2Z–manifolds are actually manifolds (possibly non–orientable). One can see that
the thickening constructed here is the total space of the orientation line bundle over the manifold M/δM .
Formula (1.4) on p.474 of Morgan–Sullivan [5] follows.

Remarks: The above construction is fairly functorial since all but one of the choices just involves the disk
and so can be fixed for all Z/nZ–manifolds. The one choice that is not of this sort is the choice of ordering for
the boundary components. This choice does not affect the Z/nZ–manifold but it does affect the thickening.
There are n! such choices so we get n! potentially different thickenings. One can see that if two identifications
differ by a cyclic permutation, then the resulting thickenings are diffeomorphic. Our set of thickenings up
to diffeomorphism contains at most (n − 1)! elements and one can construct examples for which there are
(n− 1)! distinct diffeomorphism types. (For such an example let M be the disjoint union of once punctured
closed manifolds Mi where Mi is the connected sum of i copies of CPn. One can recover the ordering up to
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cyclic permutation from the homotopy type of the boundary of W .)
Remark: Morgan and Sullivan want Z/n1Z manifolds in order to have a geometric theory of bordism
with Z/n1Z coefficients. They observe that in order to get natural maps between theories with different
coefficients one must order the boundary components. These maps have nice descriptions on the thickenings.

1. Start with a thickened Z/n1Z manifold and let n2 = n1 · n3. Take the evident n3–fold cyclic branched
cover, branched along the bockstein. This is a thickening of a Z/n2Z manifold. The projection map
from the total space of the branched cover to the base covers the Morgan–Sullivan map on bordism with
coefficients induced by the injection Z/n1Z → Z/n2Z.

2. Start with a thickened Z/n2Z manifold and suppose n2 = n1 · n3. Take a new bockstein consisting of
n3 copies of δM , labeled δMi. Glue the ∂Mj to the δMi satisfying j ≡ i mod n3 to get a thickening of
a Z/n1Z manifold. There is an embedding from the thickening of the Z/n1Z manifold just constructed
to the thickening of original Z/n2Z manifold. (Just map each of the n3 2–disks for the δMi to the

2–disk for δM by rotating the ith disk through an angle of 2π(i−1)
n2

and extend.) This map covers the
Morgan–Sullivan map on bordism with coefficients induced by the surjection Z/n2Z → Z/n1Z.

Remarks: The thickening construction is functorial on the category for which the maps are smooth maps
which preserve the ordering on the boundary. The thickenings are examples of homotopically stratified
spaces with three strata in the sense of Quinn. Finally, the double of W gives a thickening of M/δM in one
dimension higher. It can also be constructed by preforming a construction similar to the one above but using
D3 instead of D2. The diffeomorphism type of these thickenings is independent of the chosen ordering.
Remark: We leave it to the reader to pursue the k–ad (in the sense of Wall [13]) version of this construction.

Some remarks on representation

Corollary 5. Let X be a CW complex with finite skeleta. Let x ∈ Hk(X;Z(2)) be a cohomology class.
Then there exists a closed, compact orientable manifold, Nn, and a map f :N → X such that f∗(x) �= 0. If
x has infinite order, we may take n = k; otherwise we may take n = k + 1.

The proof of the Corollary is immediate from Steenrod representability as proved by Thom [9], Wall [11]
and Connor & Floyd [2]. If x has infinite order there is a class c ∈ Hk(Z;Z(2)) with 〈x, c〉 �= 0. Represent

c and the result follows. If x has finite order 2� there is a class c ∈ Hk−1(X;Z(2)) of finite order 2� with

the following property. The homomorphism c:Z/2�Z → Hk−1(X;Z(2)) induced by c gives rise via Universal

Coefficients to a homomorphism c∗:Hk(X;Z(2)) → Z/2�Z with c∗(x) �= 0. By the Thom, Wall and Connor

& Floyd results above, we can find a Z/2�Z manifold and a map g:M/δM → X so that δg: δM → X
represents c, from which we deduce g∗(x) �= 0. Use Theorem 1 to thicken M/δM and let G:D(W ) → X
denote the evident map from the double of the thickening to X induced by g. Then G∗(x) �= 0 and we let
f = G.

To paraphrase the above proof, detecting cohomology classes involves being able to represent homology
classes of finite order by mapping in elements of the same order, hence Z/nZ manifolds. A more complicated
but still useful representation theorem proceeds as follows. Let X have finite skeleta and consider x ∈
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Hr(X × BSO;Z). Suppose x has order 2� and that x is in the image of MSOr(X). Then there exist
manifolds Mm for all m ≥ r + 2, a map f :M → X, and a class χ ∈ Hr(M ;Z) of order 2� such that

1. (f × τM )∗(χ) = x
2. (f × τM )∗

(
Hr(M ;Z)

)
is the cyclic subgroup generated by x

3. (f × τM )∗ = 0 for ∗ > r.

Applications to codimension 2 submanifolds

By a result of Thom’s [9], a mod 2 cohomology class x ∈ H2(M ;Z/2Z) has a dual submanifold if
and only if the map x:X → K(Z/2Z, 2) factors through the Thom class U :TO(2) → K(Z/2Z, 2). (The
Bockstein associated to the exact sequence 0 → Z ×n−−→ Z → Z/nZ → 0 is denoted δn.) Suzuki [8] writes
down a partial Postnikov decomposition for TO(2). Let P2 denote the Pontrjagin square and let E be the
fibre of the map

K(Z/2Z, 2) ×K(Z/2Z, 4) ×K(Z/2Z, 8)

(
δ4P2(ι2)+δ2ι4

)
×
(
(Sq1ι2)

2+ι2ι4

)
−−−−−−−−−−−−−−−−−−−−−−−→ K(Z, 5) ×K(Z/2Z, 6)

There is a map TO(2) → E which induces an isomorphism in mod 2 and integral cohomology through
dimension 8. More precisely, the next k invariant is in dimension 9. The proof is straightforward. There is
a twisted Thom class Uω ∈ H2(TO(2);Zω) and by Massey’s formula [4], P2(U) = Uω ∪Uω + θ2(w

2
1U) where

θ2:Z/2Z → Z/4Z is the usual injection. It follows that δ4P2(U) + δ2(w
2
1U) = 0. Define

I:TO(2) → K(Z/2Z, 2) ×K(Z/2Z, 4) ×K(Z/2Z, 8)

by I∗(ι2) = U , I∗(ι4) = w2
1U and I∗(ι8) = w6

1U . Massey’s formula and Thom’s formula, Sq1(U) = w1U ,
together verify that this map lifts to E. There is a class x ∈ H4(E;Z) which transgresses to a generator
of H5

(
K(Z, 5);Z

)
and we require that under the map ι:TO(2) → E, ι∗(x) = Uω ∪ Uω. This makes ι∗ an

isomorphism in cohomology with Z[ 12 ] coefficients.
Check that I∗ is onto in mod 2 cohomology through dimension 15. Serre’s results [7] on the Poincaré

series of Eilenberg–MacLane spaces can be used to check that ι∗ is an isomorphism in mod 2 cohomology
through dimension 8. It follows that the next k invariant is in dimension 9.

Theorem 6. If x ∈ H2(M ;Z/2Z) has a submanifold dual then there exists a class y ∈ H4(M ;Z/2Z) such
that δ4P2(x) + δ2(y) = 0 and (Sq1x)2 + x ∪ y = 0. If the dimension of M is less than 9, then the condition
is also sufficient.

Remark: Given x a y exists so that δ4P2(x) + δ2(y) = 0 if and only if 2 · δ4P2(x) = 0, which is just
δ2Sq

2(x) = 0, a remark of Thom’s [9]. If there is such a y, then both equations have a solution if and only
if (Sq1x)2 + x ∪ y ∈ x ∪H4(M ;Z). The equation δ4P2(x) + δ2(y) = 0 reduces mod 2 to the equation

x ∪ Sq1(x) + Sq2Sq1(x) + Sq1(y) = 0 .

Remark: There are two cases with easy solutions. Suppose δ2x = 0. Note that P2(x) is the mod 4 reduction
of the square of an integral class lifting x, so (x, 0) is a solution to both the equations. Fix a 1 dimensional
cohomology class ω ∈ H1(M ;Z/2Z) and suppose δω2 x = 0, where δω2 is the twisted integral Bockstein. By
Massey’s formula [4], P2(x) = x̄ ∪ x̄ + θ2(ω

2 ∪ x), so (x, ω2 ∪ x) is a solution to the first equation. By a
formula of Samelson [6], Sq1(x) = ω ∪ x so the second equation holds as well.

Remark: Consider the more specialized problem of whether w2 of some bundle over M has a submanifold
dual. Now we can calculate in BO and then restrict. Since all integral torsion has exponent 2 we only have
to do our calculations mod 2. Our first equation becomes w2Sq

1w2 + Sq2Sq1w2 + Sq1y = 0. This equation
has a solution for y = w4 + w2

1w2. Hence, a necessary condition for w2 of a bundle to have a submanifold
dual is that

(7) w2
3 + w2w4 ∈ w2 ∪ H4(M ;Z) .

This condition is sufficient if the dimension of M is less than 9.
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Suzuki [8], Thm.7.1 p.110 has much the same formula except he is missing the w2w4 term. The
difference probably comes from his formula for P2(w2) on p.106 instead of Thomas’s [10, Thm. C p.71].
Suzuki’s formula is inconsistent with the formula for the mod 2 reduction of δ4P2(w2).

Since H∗(BTOP ;Z) also only has torsion of exponent 2 through dimension 6, the same necessary
condition holds for TOP bundles and it remains sufficient for the dimension of M less than 9. For spherical
fibrations, the 2 torsion result fails and indeed δ2Sq

2w2 �= 0 ∈ H5(BSG;Z).

Theorems and Examples in Codimension 2

We begin with a result of Thom’s [9, II.2.6 p.55].

Theorem 8. Any x ∈ H2(M ;Z/2Z) has a submanifold dual if the dimension of M is less than 6.

The proof is immediate since either δ2 is onto or δ4 is 0 on a connected manifold.

Example: Thanks to Corollary 5 and the failure of δ2Sq
2w2 to vanish for spherical fibrations, there is an

orientable, smooth, closed, compact 6 manifold M and an orientable spherical fibration ζ over it so that
w2(ζ) ∈ H2(M ;Z/2Z) has no submanifold dual. We can construct simply–connected manifolds and spherical
fibrations with the same property in all dimensions greater than 6.

For bundles, the situation is more complicated.

Theorem 9. Let ζ be a TOP bundle over a closed, compact 6 manifold. Then w2(ζ) has a submanifold
dual.

Proof : We may assume that M is connected. Equation (7) is easily satisfied if the map w2(ζ) ∪ H4(M ;Z) ⊂
H6(M ;Z/2Z) = Z/2Z is not trivial, so let us hereafter assume it is. This condition is equivalent to the
condition that

∩w2(ζ):H2(M ;Zw1(M)) → Z/2Z

is trivial. But in this case, w2(ζ) is the mod 2 reduction of a twisted integral class and hence has a submanifold
dual by our previous discussion.

Example: Here is an example of a seven dimensional manifold with a bundle whose w2 has no submanifold
dual. Start with RP 3 × RP 2 and construct the projective bundle on the vector bundle which is the sum
of three line bundles whose w1’s are α + β, α and 0 respectively. Here α ∈ H1(RP 3;Z/2Z) and β ∈
H1(RP 2;Z/2Z). Let P 7 denote the total space of this bundle and recall H∗(P ;Z/2Z) = Z/2Z[α, β, γ]
modulo the relations α4 = 0, β3 = 0 and γ3 = ω1γ

2 + ω2γ + ω3. Then w2 of the sum of the three line line
bundles whose w1’s are α, β and γ respectively has no submanifold dual.

There is still the natural question of when w2 of the tangent or normal bundle of a manifold has a
submanifold dual. The sixth Wu class of a bundle, v6, can be expressed as a polynomial in the Stiefel–
Whitney classes or in the Stiefel–Whitney classes of the inverse bundle, w̄i: explicitly

(10)
v6 =w̄2

3 + w̄2w̄4 + w̄2(p̄1 + δ2w̄3)

=w2
3 + w2w4 + w1v5 + w2 ∪ δ2(w

3
1 + w3)

So equation (7) becomes

(11)
v6 ∈ w̄2 ∪H4(M ;Z)

v6 + w1v5 ∈ w2 ∪H4(M ;Z)

For a manifold of dimension less than 10, v5 and v6 of the tangent bundle are trivial, so we have shown
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Theorem 12. For a manifold of dimension ≤ 8, w2 and w̄2 of the tangent bundle have submanifold duals.

Examples: In dimension 12 using surgery, we can construct an oriented manifold with (τM )∗:H∗(BSO) →
H∗(M) an isomorphism for ∗ < 6 and an injection for ∗ = 6. For this 12 manifold, the dual to w2 of the
tangent bundle is not realizable by a submanifold. For orientable bundles, w2 of the normal and tangent
bundles are the same.

In dimension 11, Suzuki [8] shows that w2 of the tangent bundle for the 11 manifold RP 2 ×RP 4 ×RP 5

is not realized by a dual submanifold. One can check that w2 of the tangent bundle of the 10 manifold
RP 2 × RP 2 × RP 6 is not the dual to a submanifold either. The proof is straightforward. Compute w1,
w2 and v5 for RP 2 × RP 2 × RP 6: v6 = 0. The group H4(RP 2 × RP 2 × RP 6;Z) is a Z/2Z vector space
of dimension 5, so the equation w1v5 ∈ w2 ∪ H4(RP 2 × RP 2 × RP 6;Z) from (11) degenerates into a set of
equations in 5 unknowns. These equations are inconsistent.

The remaining question is to find the least dimension of a manifold whose w2 (tangent or normal) does
not have a submanifold dual. Is there a tangential example in dimension 9: is there a normal example in
dimension 9, 10 or 11? The necessary condition from equation (11) is always satisfied so the third k–invariant
must be analyzed.
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