2-LOCAL COBORDISM THEORIES

LAURENCE R. TAYLOR

1. Introduction

We give new proofs of the principal results of Thom [11], Wall [12], and Browder-
Liulevicius-Peterson [3] on the structure of various cobordism theories at the prime 2.
We improve the principal results of Browder-Liulevicius-Peterson by removing their
hypothesis that certain cohomology groups are finite. The proofs use classical facts
about H,(B0O), H,(BSO) and the Steenrod algebra, together with an idea of J. Cohen
[6]. Cohen’s idea was to observe that for an homology theory E and certain spectra
X, E,(X) may be quite easy to calculate. We can then use the Atiyah-Hirzebruch
spectral sequence to try to calculate E,(pt.), which appears in E? of the AHss.

2. Unoriented cobordism
We need the following three facts.

1. H,(MO) is a polynomial algebra with one generator in each positive dimension.
This follows from the Thom isomorphism theorem and Borel’s calculation of H*(BO)
[2]. All homology and cohomology groups without indicated coefficients are with
Z, coefficients.

2. H,(MO) = MO,(HZ,) since both are the homotopy of MOAHZ,. We use
Adams’s notation for spectra [1].

3. Hy(HZ,) = Z,[¢4, &5, ...] where dim &, = 2k—1 [91.
Consider the Atiyah-Hirzebruch spectral sequence for MO ,(HZ,).
E?, ,= MO, ® H,(HZ,)
and the edge homomorphism MO,(HZ,) — H,(HZ,) is the map

Aid
MO AHZ,—> HZ, ANHZ,
where u: MO — HZ, is the Thom class in H°(MO), [1]. The map uid is onto in
homotopy which is verified by using the lemma below to show that id Au is onto in

homotopy.

The AHss is multiplicative since both MO and HZ, are ring spectra. Since all the
differentials vanish on E7y , and on E', o, the spectral sequence collapses.

Since H,(HZ,) is polynomial, the map MO,(HZ,) — H4(HZ,) is split as a ring
map. Hence there is a map of rings extending the splitting

Y : MOy ® Hy(HZ,;) -~ MO(HZ,).

The ring MO ,(HZ,) is filtered to produce the AHss and MO,_, ® H,(HZ,) lands in
the pth filtration under . With the obvious filtration on the left, y induces an iso-
morphism of associated grades and is therefore an isomorphism. We have proved
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Treorem 1. MO, is a polynomial algebra with one generator in each dimension
not equal to 2 —1.

MO, - H,(MO) is monic since it is the other edge homomorphism in the AHss.
H ,(MO) is a Z,-vector space, so this map is split monic. It factors through
MO, - H,(MO; Z)

which must also be split monic.

THEOREM 2. MO is a product of HZ,’s.

Proof. Homotopy is a summand of integral homology if and only if all the
k-invariants are trivial, [8; Corollary 1.3].

To state our lemma, consider sequences I = (iy, ..., i,, 0, ...) such that
iy=z..2i.>0.

We can order such sequences by (i3, ...) > (jy, ...) if and only if iy > j;; or iy = j;
and i, > jy; or i, =jy, iy =J, and i3 > ji; ete. To I = (iy, ..., i, 0, ...) we can
associate the monomial w; = w;, ... w;_ in H*(BO) and the element

Sq’ = Sq" ... Sq'r

in the Steenrod algebra. We say w; is bigger than w; if and only if I > J. Let
U e H°(MO) be the Thom class and @ : H*(M0O) — H*(BO) the Thom isomorphism.

LemMA. If I is admissible (i.e. if iy > 2iyy 4, all k)
®(Sq’ U) = wy+smaller monomials.
Proof. The proof is an easy induction on r using admissibility, the Cartan formula,

and the Wu relations [7]. Itisdone in [11].

The lemma proves H*(HZ,) — H*(MO) monic since H*(HZ,) has a vector space
basis Sq”, I admissible [5]. We used the dual statement.

3. Oriented cobordism

H ,(MSO0) is a polynomial algebra with one generator in each dimension greater
than 1, [2].

H,(HZ) = Z,[x, ¥5, y3, -..] where dimx = 2, dim y; = 2¥—1. To see this, recall
that H ,(HZ) is the kernel of the derivation, d, on H4(HZ,) defined by d() = B ia
This kernel is generated as a polynomial algebra by b .2 and b, k > 1, where b, is the

conjugate of &,.

H,(MSO0) - H,(HZ) is onto where MSO — HZ is the Thom class. This follows
from the lemma as before.

MSO0Z, is the ring spectrum for the cobordism theory of manifolds whose w, is
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the mod 2 reduction of an integral class. We can use the AHss to calculate
(MSOZ,), (HZ) = H(MSOZ,;Z) = H(MS0) = n,(MSO AHZ AM,)

where M, is the Moore spectrum of type Z,. Mimicking Section 2, we have

THEOREM 3. (MSOZ,), is a polynomial algebra over Z, with one generator in each
dimension not equal to 2 —1 or to 2.

H,(MSO0, Z) has no elements of order 4, [2]. H.(HZ;Z,) has no elements of
order 4, [5]. This can be seen directly if we observe that the Bockstein, f, satisfies
B(by) = b*_1. E? of the Bockstein spectral sequence is generated by the b,%, so the

higher Bocksteins vanish for dimensional reasons.
Let E*, , be the E™ term of the AHss for (MSOZ,)s (HZ). Let F7, , be the E”

term of the AHss for (MSOZ,), (HZ).
If G is an abelian group, define p(G) = dimz, G ® Z,. One can see that

p(E2, ) = p(F?,, 0,

which in turn equals p(Fy ) since E? = E® for (MSOZ,), (HZ), as the reader who
has actually carried out the proof of Theorem 3 has seen.

P(Hi(MSO)) = kg‘o p(F®, i-1)
since all the extensions are split. p(E®,, ) < p(Ezp, p and
P(Hi(MSO; Z4)) < kz:o P(E™y, d-1)-

Since p(H;(MSO0)) = p(H,(MSO; Z,), p(E?, ) = p(E®,,,). Since E?, . has no
elements of order 4 for p > 0, there can be no differentials. Hence

(MSOZ,) 4 —~ Hy(MSO;Z,)

is monic and therefore, by the universal coefficient theorem [1; Prop. 6.6, p. 200],
so is MSO, ® Z,. But this implies that MSO, has no elements of order 4 and, if
Z5y denotes rationals with odd denominators, (MSOZ ), is a direct summand of
H (MSOZ,,y; Z). Hence we have

THEOREM 4. All the k-invariants of MSOZ  are trivial.

4, Super cobordism theories

Definition. A graded ring R, is an l—r Hopf algebra if R, is a left and a right
coalgebra comodule over the dual of the Steenrod algebra. We require that the dual
algebra, which is both a left and a right module over the Steenrod algebra, be a right-
left algebra as in [4; page 50]. Moreover, the coalgebra structure should make R,

into a cocommutative Hopf algebra.

H,(MO)and M, (MSO) are two examples.

A super O theory is a connective ring spectrum MH, whose homology is an I—r
Hopf algebra, and a map of ring spectra MO — MH which induces an !—r Hopf
algebra map on homology.
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The only examples we know come from Thom spectra associated to various
“ bundle ” theories. We have spaces BH(n) and maps g,: BO(n) - BH(n) and
hy,: BH(n) - BF(5)(n), which is the classifying space for n-dimensional, 2-local,
spherical fibrations with cross section. #,g, should be the usual map. The 4, give
Thom spaces MH(n) and Thom isomorphisms with Z, coefficients. We have a
stabilization map BH(n) — BH(n+1). The two obvious squares involving BO(n) and
BF 3)(n) should commute up to weak homotopy. We further postulate a Whitney
sum BH(n) x BH(m) » BH(n+m) so that the obvious squares involving the BO(n)
or the BF ,,(n) commute up to weak homotopy. Finally we require that (1) should
commute up to weak homotopy.

/ BH(n + 1) X BH(m) \

BH(n) X BH(m) ———— BH(n+m) ——— BH(n+m+1) (6]

\ BH(n) X BH(m + 1) /

(1) guarantees that the MH (n) fit together to form a ring spectrum, MH, and that
the BH(n) fit together to form a weak H-space, BH. We assume that BH is weakly
homotopy associative. H,(MH) =~ H,(BH) as algebras. H,(BH) is a Hopf algebra
and a left comodule over the dual of the Steenrod algebra, so H,(MH) is also. The
usual left comodule structure of H .(MH) becomes a right one by using the conjugation
in the dual of the Steenrod algebra. H*(MH) is a right-left algebra by Theorem 8.5
of [4] and the proof of the principal result of [7]. Hence H,(MH) is an 1—r Hopf
algebra.

Since 4, g, is the standard map, we get a map of ring spectra MO — MH which is
easily seen to induce an I —r Hopf algebra map. Thus MH is a super O theory.

For any super O theory we have

THEOREM 5. MH is a product of HZ,’s. There exists a Z,-vector space C, and
isomorphisms MH, — MO, ® C, and H,(MH) —» H,(MO) ® C,. If the image of
H ,(MO) in H,(MH) commutes with all of H,(MH), then C, becomes a ring and the
above maps are ring isomorphisms.

Notice that we have required no finiteness hypothesis on H,(MH) and so we can
apply Theorem 5 to some of the ¢ bundle ** theories of Quinn [10]. If BH is weakly
homotopy commutative, H ,(MH) is commutative.

Proof. Brown and Peterson [4] produce a map H*(MO) - H*(MH) which can be
de-dualed to get a map r : H (MH) - H,(MO). We can do this since H,(MO) is
finite in each dimension. The needed result from linear algebra is that, if

T : Homg(F", F) » V*

is a linear map, then there exists a linear map S: V — F" with T = S*. S is defined
by the equation 7;0S = T(=;), where m;: F* — S is the ith co-ordinate projection.
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r is a map of coalgebras and left and right comodules. To see that it is a ring map,
note that both ways of going from H,(MH) ® H(MH) to H,(MO) are maps of
coalgebras and left and right comodules. Since there is only one such map from
H,(MH) ® Hy(MH) — H 4+(MO) [4; Corollary 8.6], r is a ring map. This uniqueness
also shows that r splits H ,(MO) — H ,(MH).

Just as in part 2, MH , ® H (HZ,) = H4(MH), but now only as abelian groups.
Still, MH is a product of HZ,’s. Let C, be H ,(MH) modulo the subgroup R, where
R, is the subgroup generated by all elements of the form n2 - h, where heH «(MH)
‘and me H;(MO) with i > 0. The map ¢ : Hy(MH) - H,(MO) ® C, is given by
Hy(MH) - H(MH) ® H(MH) - H,(MO) ® C,. Split the projection to C, so
that C, — H.(MH) —» H,(MO) is zero. The structure map H,(MO) - Hy(MH)
and the product give a map H,(MO) @ Cy — Hy(MH) and the composite with ¢
can be checked to be an isomorphism.

Any element in H,(MH) can be written as ¢+ X; m; h; where c is something from
the splitting of Cy, m; is from H (MO) with % > 0. Since Hy(MH) = C,, induction
on the grading proves that the image of C generates H «(MH) as an H ,(MO) module.
Hence ¢ is an isomorphism. If the image of H,(MO) in H «(MH) commutes with
H .(MH), R, becomes a two-sided ideal. Hence C, is a ring and ¢ becomes a ring
isomorphism.

The reader can check that C, is always a coalgebra and a right and left comodule
over the dual of the Steenrod algebra. ¢ can be seen to be a map of [ —r Hopf algebras.
This recovers all of the Browder—Liulevicius—Peterson results on the structure of C.

The map MH, — H,.(MH) — C, is also onto since H,(HZ,) —» H ,(MH) can be
picked to factor through H,(MO). Splitting this gives a map MO, ® Cy — MH,
and, as before, the image of C, generates over MO,. The map MH, — MO, ® Cy
is given by MH, — H4(MH) > H(MO) ® Cy, > MOy ® Cy. The composite
MO, ® Cy —» MH, — MO, ® C, is again checked to be an isomorphism, and the
rest of the proof follows easily.

A super SO theory is a connective ring spectrum MSH, whose homology is an
I—r Hopf algebra, and a map of ring spectra MSO —» MSH which induces an [—r
Hopf algebra map on homology. Further we require that Sq! is zero on H°(MSH).

This last condition guarantees that the map H ,(MSH) — H ,(MO) factors through
H,(MSO0). We can now analyse MSHZ, as above. We leave the details to the reader.

We finish with
THEOREM 6. All the k-invariants of MSHZ,, are 0.

Proof. The sphere spectrum S is the unit for the ring spectra MSOZ,, and
MSHZ,,. The map S — MSOZ ) factors through HZ ,, by Theorem 4.

MSH A S - MSH AHZ ;,— MSH AMSOZ;y~ MSH A MSHZ 3, ~ MSHZ ,,
shows that (MSHZ,)) is a summand of H ,(MSH: Z(,y). But
H,(MSH; Z(z)) = H*(MSHZ(Z); Z)

since both are the homotopy of MSH A M(,,, where M, is the Moore spectrum of
type Z,.
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