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Abstract. Two closely related descriptions of the set of Spinc structures
on an oriented 3–manifold are given in completely algebraic terms. A
third such description was given by Deloup and Massuyeau [DM]. It
is hoped that the descriptions given here will prove convenient in ap-
plications. The descriptions are natural in that the map induced by a
diffeomorphism between the sets of Spinc structures can be calculated
once the linking forms on the manifold and the induced map in homology
are known.

1 Basic definitions and standard results

Both the descriptions given here and the one given by Deloup and Massuyeau
[DM] depend on the notion of a quadratic function. A function ψ : T → Q/Z out
of an abelian group T is called quadratic provided the function

Bψ(t1, t2) = ψ(t1 + t2)− ψ(t1)− ψ(t2) : T × T → Q/Z

is bilinear. Equivalently

ψ(t1 + t2 + t3) = ψ(t1 + t2) + ψ(t1 + t3) + ψ(t2 + t3)− ψ(t1)− ψ(t2)− ψ(t3) .

A quadratic function is called homogeneous provided ψ(−t) = ψ(t) for all
t ∈ T : the homogeneity defect is the homomorphism dψ : T → Q/Z defined by
dψ(t) = ψ(t)− ψ(−t) and vanishes if and only if ψ is homogeneous.

If a symmetric bilinear form L : T × T → Q/Z is fixed, call any quadratic
function ψ such that Bψ = L a quadratic enhancement of L. Let Quad(L) denote
the set of quadratic enhancements of L.

Given any group G and G set X, X will be called a G–torsor proved the action
is simply–transitive: any choice of element x ∈ X induces a bijection between X
and G,
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There is a group action

Hom(T,Q/Z)×Quad(L) → Quad(L)

given by sending f ∈ Hom(T,Q/Z) and ψ ∈ Quad(L) to f •ψ(t) = ψ(t)+f(t) : T →
Q/Z which makes Quad(L) into a Hom(T,Q/Z)–torsor. The subset of homoge-
neous, quadratic enhancements, Quad(L)h, is a 2Hom(T,Q/Z)–torsor, where for
an abelian group A, 2A denotes the subgroup generated by the elements of order
2.

Given bilinear forms LT on T and LS on S, an isometry between them is
a homomorphism ` : S → T such that LT

(
`(s1), `(s2)

)
= LS(s1, s2). If ψ is a

quadratic enhancement of LT , ψ◦` : S → Q/Z is a quadratic enhancement of LS . If
ψ is homogeneous, so is ψ◦`. Let Isom (L) denote the group of invertible isometries
of L: Isom (L) acts on Quad(L): the subset of homogeneous enhancements is an
invariant subset.

Every oriented 3–manifold has Spinc reductions of its stable tangent bundle.
Let Spinc(M) denote the set of such reductions. The set Spinc(M) is a H2(M ; Z)–
torsor via an action

H2(M ; Z)× Spinc(M) → Spinc(M) .

If x ∈ H2(M ; Z) and σ ∈ Spinc(M), let x • σ denote the result of the action.
Every Spinc structure σ ∈ Spinc(M) has a first Chern class c1(σ) ∈ H2(M ; Z) and
c1(x • σ) = c1(σ) + 2x.

Every closed, compact, oriented 3–manifold has a linking form

LM : TH1(M)× TH1(M) → Q/Z
where TH1(M) ⊂ H1(M ; Z) denotes the torsion subgroup.

2 The work of Deloup and Massuyeau

Deloup and Massuyeau extend the linking form on a closed, compact, oriented
3–manifold to a bilinear function bM : H2(M ; Q/Z) ×H2(M ; Q/Z) → Q/Z. Then
to each Spinc structure σ they associate a quadratic enhancement of bM , φM (σ) ∈
Quad(bM ). Evaluation defines a homomorphism

µM : H2(M ; Z) → Hom(H2(M ; Q/Z),Q/Z)

so Quad(bM ) becomes an H2(M ; Z) module. Then Deloup and Massuyeau prove

Theorem 2.1 ([DM, Theorem 2.3]) The function

φM : Spinc(M) → Quad(bM )

is injective and H2(M ; Z)–equivariant. Deloup and Massuyeau give an algebraic
description of the image of φM .

Remark 2.2 The map φM is natural in the following sense. If f : M → N is
an orientation preserving diffeomorphism then the differential induces a bijection
df∗ : Spinc(N) → SpincM . The map f induces an isometry between bM and bN
and hence a bijection f∗ : Quad(bN ) → Quad(bM ). The diagram

Spinc(N)
df∗−−−−→ Spinc(M)yφN φM

y
Quad(bN )

f∗−−−−→ Quad(bM )
commutes.
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Remark 2.3 If M is a rational homology sphere, then φM is an isomorphism
but if H1(M ; Q) 6= 0 then the domain of φM is countable and the range has the
cardinality of the reals.

Remark 2.4 There is a relation between the first Chern class of the Spinc

structure and the homogeneity defect: succinctly the following diagram commutes,
[DM, Lemma 2.8].

Spinc(M)
φM−−−−−−−−−→ Quad(bM )yc1 d

y
H2(M ; Z)

µM−−−−→ Hom(H2(M ; Q/Z),Q/Z)

3 The main results

The goal of this note is to find natural, algebraic objects which map into
Spinc(M). There are lots of 3–manifold invariants which are functions out of
Spinc(M) and they will induce functions out of algebraic objects.

The main idea goes back at least as far as [Ta], [KT], or [LW], all of which
predate the current interest in Spinc structures. To begin, consider the set Spin(M)
of Spin structures on M . It is an H1(M ; Z/2Z)–torsor.

Any Spin structure is an example of a Spinc structure so there is a map

Ψ: Spin(M) → Spinc(M) .

The integral Bockstein δ : H1(M ; Z/2Z) → H2(M ; Z) is a homomorphism and Ψ is
H1(M ; Z/2Z)–equivariant using δ to get the action on Spinc(M). It follows that the
image of Ψ is precisely the set of Spinc structures with first Chen class 0, denoted
Spinc(M)0.

Given a Spin structure on M , the papers [Ta] and [KT] exhibit a homogeneous,
quadratic enhancement of the linking form LM on TH1(M), the torsion subgroup
of H1(M ; Z). Since the set of such homogeneous, quadratic enhancements is a
2H

2(M ; Z)–torsor and since 2H
2(M ; Z) is the image of δ, it follows that

Theorem 3.1 There is a bijection κM : Quad(LM )h → Spinc(M)0. Both sets
are 2H

2(M ; Z)–torsors and κM is equivariant. The bijection κM is also natural:
given a diffeomorphism f : M → N ,

Quad(LN )h
f∗−−−−→ Quad(LM )hyκN κM

y
Spinc(N)0

df∗−−−−→ Spinc(M)0
commutes.

Corollary 3.2 There is a natural bijection

H2(M ; Z)×
2H2(M;Z)

Quad(LM )h → Spinc(M)

given by (x, ψ) 7→ x • κM (ψ).

The proof of (3.1) is straightforward except perhaps for the naturality. But
recall, [KT, p. 209], the enhancement is given as follows. To define ψ(t) take an
embedded circle representing t. Use the Lie group framing on the tangent bundle
of the circle and the Spin structure on the manifold to put a Spin structure on the
stable normal bundle of the embedding. This divides the framings of the normal
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bundle into even and odd ones. The self–linking number is computed by taking a
section of the normal bundle, finding an embedded surface with boundary a multiple
of this push off, counting intersections of the original circle with this surface and
finally dividing this number by the multiple used. To get the enhancement, use
an even push off and divide by twice the multiple used. With this description the
naturality is clear.

Remark 3.3 The naturality has the consequence that two orientation preserv-
ing diffeomorphisms f , g : M → N which induce the same map on H1( ; Z) induce
the same map between the sets of Spinc structures. More generally, it implies that
maps induced by differentials on sets of Spinc structures can be computed once the
induced maps in homology are known.

The information in 3.1 and 3.2 can be repackaged as follows. The torsion
subgroup ofH2(M ; Z) is isomorphic to TH1(M), the torsion subgroup ofH1(M ; Z),
and Quad(LM ) is a TH1(M)–torsor. The set Spinc(M)0 is a subset of Spinc(M)t,
the set of Spinc structures with torsion first Chern class. The set Spinc(M)t is a
TH1(M)–torsor and so there is an equivariant bijection induced from κM

κM : Quad(LM ) → Spinc(M)t .

In [LW, p. 271], Looijenga and Wahl give a procedure for passing from a Spinc

structure with torsion first Chern class, to a quadratic enhancement of the linking
form. Corollary 3.2 can be repackaged as

Corollary 3.4 The function κM : Quad(LM ) → Spinc(M)t is a natural bijec-
tion. It extends to a natural bijection

H2(M ; Z)×
T H1(M) Quad(LM ) → Spinc(M) .

Remark 3.5 Any function out of Spinc(M) extends to a function out of
H2(M ; Z) × Quad(LM )h or out of H2(M ; Z) × Quad(LM ). Usually several pairs
go to the same Spinc structure, but this seldom presents a difficulty.

Remark 3.6 By the universal coefficients theorem, there is an exact sequence
0 → Q/Z ⊗ H2(M ; Z) → H2(M ; Q/Z) → TH1(M) → 0. Any quadratic en-
hancement of the linking form on TH1(M) extends to a quadratic function on
H2(M ; Q/Z) which can be checked to be a quadratic enhancement of bM , giving a
function r : Quad(LM ) → Quad(bM ). The same exact sequence defines an injective
homomorphism Hom(TH1(M),Q/Z) → Hom(H2(M ; Q/Z),Q/Z) and the function
r is equivariant. The function r factors as the following composition

Quad(LM ) κM−−−−→ Spinc(M)t ⊂ Spinc(M)
φM−−−−→ Quad(bM ) .

The function R : H2(M ; Z) × Quad(LM ) → Quad(bM ) is given by the formula
R(x, ψ) = µ(x) • r(ψ).

Remark 3.7 The function µM : H2(M ; Z) → Hom(H2(M ; Q/Z),Q/Z) when
restricted to TH2(M), the torsion subgroup ofH2(M ; Z) lands in Hom(TH1(M),Q/Z) ⊂
Hom(H2(M ; Q/Z),Q/Z): use µM : TH2(M) → Hom(TH1(M),Q/Z) to denote the
restricted function. The composition

Quad(LM ) κM−−−−→ Spinc(M)t
c1−−−−→ TH2(M)

µM−−−−→ Hom(TH1(M),Q/Z)

is the homogeneity defect.
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4 A recall of one way to calculate

Every oriented 3–manifold bounds a simply–connected 4–manifold and every
4–manifold supports Spinc structures. One way to describe a Spinc structure on
M is to pick a simply–connected W 4 with ∂W = M and a class c1 ∈ H2(W ; Z)
whose mod 2 reduction is the second Stiefel–Whitney class of W . Since H2(W ; Z)
is torsion free, c1 determines a unique Spinc structure on W whose first Chern class
is c1. This Spinc structure can then be restricted to one on M , denoted σW,c1 .

Let V denote the image of H2(W,∂W ; Q) in H2(W ; Q). Cup product induces
a non–singular, symmetric, bilinear form

BW : V × V → Q .

Let L ⊂ V denote the image of H2(W,∂W ; Z): L is a lattice. Let L# =
{
w ∈

V | BW (w, x) ∈ Z ∀x ∈ L
}
. The group L#/L is isomorphic to TH1(M). The

pairing BW induces a bilinear pairing on L#/L which under the isomorphism
with TH1(M) becomes minus the linking pairing on M . If the restriction of c1
to H2(M ; Z) is torsion, it lifts to a class c#1 ∈ L#. Define

ψW,c1(t) =
BW (t̄, t̄)

2
− BW (c#1 , t̄)

2
: TH1(M) → Q/Z

by lifting t ∈ TH1(M) to t̄ ∈ H2(W,∂W ; Q), computing the indicated rational
numbers and then reducing them mod Z. Check that ψW,c1 is well–defined. This
uses that the c1 reduces to the second Stiefel–Whitney class so for x ∈ L, BW (x, x)
and BW (c1, x) are the same mod 2. Check that −ψW,c1 is a quadratic enhancement
of the linking form on M .

Since σW,c1 ∈ Spinc(M) denotes the restriction of the Spinc structure on W
determined by c1, then c1(σW,c1) is the restriction of c1 to H2(M ; Z). Check that
there are always choices for c1 ∈ H2(W ; Z) such that c1 restricts to 0 in H2(M ; Z).

Theorem 4.1 Let W be a simply–connected 4–manifold with ∂W = M . Fix a
c1 ∈ H2(W ; Z)) restricting to the second Stiefel–Whitney class of W and restricting
to 0 in H2(M ; Z). With notation as above, σW,c1 ∈ Spinc(M)0 and κM

(
−ψW,c1

)
=

σW,c1 . If c1 restricts to a torsion class in H2(M ; Z), then σW,c1 ∈ Spinc(M)t and
κM

(
−ψW,c1

)
= σW,c1 .

Proof The proof can be extracted from the discussion in [DM, §2] or from
[LW, p. 271].

Remark 4.2 In general, σW,c1 can be identified. Pick some x ∈ H2(W ; Z)
such that c1 +2x is torsion in H2(M ; Z). Let xM denote x restricted to H2(M ; Z).
Then the pair xM ×

(
−ψW,c1−2x

)
hits σW,c1 . The entire calculation is algebraic.
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