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Let Hp denote the class of p– hyperelementary finite groups. The groups in Hp
are semi–direct products, G = C ×P , where C is a normal cyclic subgroup of order
prime to p, and P is a p–group. Inside the class H = ∪Hp of all hyperelementary
groups we consider the class of basic groups:

B = {G ∈ H| all normal abelian subgroups of G are cyclic }

whose structure is much simpler (see 3.A.6).
Recall that Swan [24] , Lam [15] and Dress [6] have shown that when a K–

theory or an L–theory functor is applied to a finite group G, it can be detected by
using the hyperelementary subgroups of G. This means that the direct sum of the
restriction maps from G to the subgroups of G in H induces an injection. In this
paper we show that many of these functors can be detected by using subquotients
of G which belong to B (see 1.A.12, 1.B.8 and 1.C.7). These detection results have
other applications such as [4 ] and [13] .

Several of the sections in this paper are divided into subsections. A subsection
A indicates that we are considering the linear case, the case which applies to K–
theory. A label of B indicates that we are doing a quadratic version which applies
to the ordinary L– theory as in Dress [6] . The C subsections apply to a more
esoteric quadratic theory that comes up in L–theory with arbitrary antistructures
as in Wall [26] . Those readers interested only in the linear theory may safely skip
any B or C subsection. Those interested only in ordinary L–theory can safely skip
any C subsection.
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Section 1: Background and Statement of Results.

A: The Linear Case
Let R be a commutative ring. For any R–algebra A, we let AP denote the

category of finitely generated projective left A–modules. If A and B are R–algebras,
we let BPMA denote the category of B−A–bimodules P such that

(i) P is finitely generated projective as a left B–module, and
(ii) rx = xr for all r ∈ R and all x ∈ P .
Direct sum makes BPMA into a symmetric monoidal category. In [19, p. 37–39],

Oliver introduced the following category.

(1.A.1) Definition: R−Morita is the category with objects R–algebras and

HomR−Morita(A,B) = K0(BPMA).

Composition is given by tensor product. We also add a zero object to make
R−Morita into an additive category.

If M is an object in BPMA , then the functor

M ⊗A :AP →BP

induces a homomorphism

M ⊗A :Kn(A)→ Kn(B)

where Kn is Quillen K–theory (see [20] ). It is easy to check that the functor Kn

factors as follows

R−Algebras −−−−−−−−→ Abelian Groups

ψ ↘ ↗

R−Morita

where ψ(A) = A and ψ(f :A → B) = BBA with bimodule structure b1 · b · a =
b1 · b · f(a).

Another of Quillen’s functors, Gn(A) = Kn(AM), where AM is the category
of finitely generated, left A–modules, factors through the category where the mor-
phisms are K0 of the category of bimodules which are finitely generated on the left
and projective on the right.

Any Morita equivalence in the classical sense (see [1 , Theorem 3.5, p.65]) yields
an isomorphism in R−Morita, and in this other category.

For working with finite groups, we find a different category convenient, but
before describing it we recall the following category theory.

(1.A.2) Ab–categories and the Add construction: A category C is an Ab–
category (MacLane [17, p.28]) if each Hom–set has an abelian group structure on
it so that composition is bilinear. Associated to an Ab–category C we have the
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free additive category Add(C) ( MacLane [17, p.194, Exercise 6(a)] ), whose objects
are n–tuples, n = 0, 1, . . . , of objects of C and whose morphisms are matrices of
morphisms in C. The 0– tuple is defined so as to be a 0–object. Juxtaposition
defines the biproduct. To avoid proliferation of names we will often name the
Add construction of an Ab–category and then think of the Ab– category as the
subcategory of 1–tuples.

A functor F :A → B between two Ab–categories is additive if the associated map
HomA(A1, A2) → HomB(F (A1), F (A2)) is a group homomorphism for all objects
A1, A2 ∈ A. The Add construction on C is free in the sense that given an additive
category A and an additive functor F : C → A, there exists a natural extension to
an additive functor Add(F ):Add(C) → A. We will often use the remark that if an
additive functor F is an embedding ( the induced map on hom–sets is injective ),
then so is Add(F ).

Next we recall some terminology from the theory of group actions on sets.
Given two groups, H1 andH2, anH2–H1 biset is a setX on whichH2 acts on the

left, H1 acts on the right and h2(xh1) = (h2x)h1 for all x ∈ X,h1 ∈ H1, h2 ∈ H2.
For each point x ∈ X we have two isotropy groups: H2

I(x) = {h ∈ H2|hx = x} and
IH1

(x) = {h ∈ H1|xh = x}. Given an H3–H2 biset, X, and an H2–H1 biset, Y ,
recall X ×H2

Y is defined as X × Y modulo the relations (x, y) ∼ (xh−1, hy) for all
x ∈ X, y ∈ Y and h ∈ H2. Clearly X×H2

Y is an H3–H1 biset. Note h ∈ H3
I(x, y)

iff we can find h2 ∈ H2 such that h · x = x · h−1
2 and y = h2 · y. These equations

define a group homomorphism
(1.A.3) H3

I(x, y)/H3
I(x) −→ H2

I(y)/(IH2
(x) ∩ H2

I(y))
which is an injection. The coset of an element h ∈ H2

I(y) comes from H3
I(x, y) iff

x · h is in the same H3– orbit as x.

(1.A.4) Definition: We define a category RG−Morita as the Add construction
applied to the following Ab– category. The objects are the finite groups H which
are isomorphic to some subquotient of G. Define HomRG−Morita(H1,H2) as the
following Grothendieck construction.

Take the collection of isomorphism classes of finite H2–H1 bisets, X, for which
|H2

I(x)| is a unit in R for all x ∈ X. Disjoint union makes this collection into a
monoid. Form formal differences and set X equivalent to X ′ if RX is isomorphic
to RX ′ as RH2−RH1 bimodules.

Define the composition

HomRG−Morita(H2,H3)×HomRG−Morita(H1,H2) −→ HomRG−Morita(H1,H3)

by sending H3
XH2

× H2
YH1

to X×H2
Y as defined above. Note that (1.A.3) implies

that composition is defined.

Remark: The requirement thatX is equivalent toX ′ if RX is isomorphic to RX ′ as
RH2−RH1 bimodules is perhaps less natural than requiring that X be isomorphic
to X ′ as bisets, but in section 4 we will want our morphism group to be a subgroup
of the corresponding morphism group of R−Morita.
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(1.A.5) Remark: A generating set for HomRG−Morita(H1,H2) is easily found.
An H2–H1 biset is the same thing as a left H2 × Hop

1 set. Such a set is just a
disjoint union of coset spaces of H2 × Hop

1 , and these are described by conjugacy
classes of subgroups of H2×Hop

1 . For all our serious work |H2×Hop
1 | will be a unit

in R, so the morphism group will be generated by the collection of all these bisets.

(1.A.6) Definition: The functor which sends H to the R–algebra RH and sends
an H2–H1 biset X to the bimodule RX, is an additive functor into R−Morita, and
hence extends to a functor from RG−Morita to R−Morita. We call this functor
the R–group ring functor.

(1.A.7) Remark: Clearly the map is well defined and note that R[X ×H2 Y ] ∼=
RX ⊗RH2 RY so the map preserves compositions. We need to see that RX is
projective as a left RH3–module. Since the orders of all the left isotropy subgroups
are invertible in R this is a standard averaging trick.

In the sequel we will write RH both for an object in R−Morita and for an
object in RG−Morita since the notation displays both the group and the ring.

(1.A.8) Generalized Induction and Restriction Maps:
LetH1 ⊂ H2 be finite groups. ThenH2, considered as a finiteH2–H1 biset, gives

an element in HomRG−Morita(H1,H2) called a (generalized) induction and written
IndH2

H1
; H2 considered as a finite H1–H2 yields a map in HomRG− Morita(H2,H1)

called a (generalized) restriction map and written ResH2
H1

.
If H → H/N is a quotient map, H/N considered as a finite H/N–H biset yields

a generalized restriction map, written ResHH/N ∈ HomRG−Morita(H,H/N); H/N
considered as a finite H–H/N biset yields a generalized induction map, written
IndHH/N ∈ HomRG−Morita(H/N,H), provided |N | is a unit in R.

If we have a subquotient H/N with H ⊂ K, we can compose the two maps above
to get a generalized restriction ResKH/N ∈ HomRG−Morita(K,H/N). If |N | ∈ R×,
we have a generalized induction IndKH/N ∈ HomRG−Morita(H/N,K). Notice that
the generalized restriction goes from the group of larger order to the group of smaller
order and the generalized induction goes the other way.

(1.A.9) Remark: We can now give a different generating set for HomRG

−Morita(H1,H2) than the one we gave in 1.A.5. The map f :H2×Hop
1 −→ H2×H1

defined by f(h2, h1) = (h2, h
−1
1 ) defines a biset bijection between (H2 × Hop

1 )/S
and H2 ×S H1, where S is a subgroup of H2 × H1. Hence a generating set for
HomRG−Morita(H1,H2) consists of the bisets associated to a generalized restric-
tion followed by a generalized induction H1 ←− S −→ H2. Such a composite is in
RG−Morita iff the order of the kernel of S → H1 is a unit in R.

(1.A.10) Definition: A hyperelementary group is basic if all its normal abelian
subgroups are cyclic. We classify these groups in (3.A.6).

(1.A.11) Theorem: Let G be a p–hyperelementary group, and let R be a com-
mutative ring such that |G| is a unit in R. Then, in RG−Morita,
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(i) The Linear Detection Theorem : the sum of the generalized restriction maps

Res:R[G] −→ ⊕{R[H/N ]:H/N is a basic subquotient of G}

is a split injection, and

(ii) The Linear Generation Theorem : the sum of the generalized induction maps

Ind:⊕{R[H/N ]:H/N is a basic subquotient of G} −→ R[G]

is a split surjection.

A more refined version of this result is stated and proved in Theorem 4.A.8. The
result itself is proved in 4.A.9.

(1.A.12) Applications: With G p–hyperelementary and |G| ∈ R×, we suppose

J :RG−Morita −→ A

is an additive functor. Then

Res: J(R[G]) −→ ⊕J(R[H/N ])

is a split injection, and

Ind:⊕J(R[H/N ]) −→ J(R[G])

is a split surjection in A. For example, set J(R[G]) equal to

(i) Kn(R[G]), Quillen K–theory for finitely generated projective modules,

(ii) KVn(R[G]), Karoubi–Villamayor K– theory ( see [KV] ), [We]),

(iii) K ′
n(R[G]) = Gn(R[G]), Quillen K– theory for the exact category of finitely

generated R[G]– modules,

(iv) Nil(R[G]) (see [8] ),

(v) Kn(Z[ 1
m ]G→ Q̂mG) ≈←− Kn(ZG→ ẐmG), where m = |G|; recall that there

is an exact sequence

· · · → Kn(ZG)→ Kn(ẐmG)→ Kn(ZG→ ẐmG)→ · · · ,

(vi) HHn(R[G]), Hochschild homology, [5, Acknowledgements],

(vii) HCn(R[G]), cyclic homology, [16] , Corollary 1.7.
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(1.A.13) Remark: All the functors except (iii) are functors out of R−Morita,
and hence out of RG−Morita. Even functor (iii) is a functor out of RG−Morita.

(1.A.14) Example: Recall Wh(G) = K1(ZG)/(±Gab). Group homomorphisms
and transfers associated to group inclusions induce maps of Wh. Composites of
these maps generate the morphism groups in ZG−Morita. Since K1 is a functor
defined on Z−Morita it is easy to check that Wh is a functor on ZG−Morita. It
seems unlikely that Wh is a functor on Z−Morita.

(1.A.15) Non-example: In (1.A.11) we cannot drop the assumption that |G| is a
unit in R. For example, K0(Z[C(2)×C(4)]) is not detected by basic subquotients,
where C(k) denotes the cyclic group of order k.

In some situations we are interested in computing ( rather than just detecting )

functors out of RG−Morita. Call a 5–term sequence 0 → A
α→ B

β→ C → 0 split
exact provided that there exists a map f :C → B such that β◦f = 1C , the identity
of C; β◦α = 0, the zero map from A to C; and α⊕f :A⊕C → B is an isomorphism.

The following theorem is proved in section 5.

(1.A.16) Theorem: Let R be a commutative ring and G a p– hyperelementary
group with |G| a unit in R. Assume that G has a normal subgroup K ∼= C(p)×C(p).
Let C0, C1, . . . , Cp be the distinct cyclic subgroups ofK. Let Z(G) denote the center
of G.

(i) If K is central, then the following sequence is split exact in RG−Morita

0→ RG
Proj−→ R[G/C0]×R[G/C1]× · · · ×R[G/Cp]

β−→ (R[G/K])p → 0

(ii) If K is not central, we may assume that K ∩ Z(G) = C0. Let G0 denote
the centralizer of K in G. Then the following sequence is split exact in
RG−Morita

0→ RG
Proj×Res−−−−−−−−−−−−→ R[G/C0]×R[G0/C1]

β−→ R[G0/K]→ 0

The maps β are defined in section 5: case (i) in 5.A.1 and case (ii) in 5.A.3.
We will see that they live in ZG−Morita, and the sequences in Theorem 1.A.16
are 0–sequences in ZG−Morita which become split exact in RG−Morita whenever
|G| is a unit in R. They are definitely not exact in ZG−Morita by Non–example
1.A.15.

B: The Hermitian Case
We begin with a discussion of quadratic form theory over a pair of rings with

antistructure. We want to develop a “bi”–version of the usual theory so that there
will be pairings mimicing those in the linear case. The concepts introduced below
are just “bi” analogues of the standard concepts in Wall’s theory of quadratic forms,
[26] , [27] , and the formulae seem to be forced by the desired pairings. It seems
best to just present the answers and some checks, with the rest left to the diligent
reader.
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Recall that a ring with antistructure , (A,α, u), is a ring A, an anti–automorph-
ism α:A→ A, and a unit u ∈ A such that

α2(x) = u−1xu for all x ∈ A
α(u) = u−1.

If (A,α, u) and (B, β, v) are rings with antistructure, then an (A,α, u)–(B, β, v)
form is a pair (BMA, λ) with BMA ∈ BPMA and λ:M ⊗A M t → B is a B–B
bimodule map. Here M t refers to an A–B bimodule structure on M obtained from
the B–A bimodule structure using α and β via the formula

a •m • b = β(b) ·m · α(a).

( We use M t−1
below to denote M with the A–B bimodule structure obtained from

the B–A bimodule structure using α−1 and β−1. ) We will also refer to λ as a
biform.

We say that the form is bi–hermitian if the following diagram commutes

M ⊗AM t λ−→ B
T

y yT
M ⊗AM t λ−→ B

where T (m1 ⊗ m2) = m2 ⊗ u−1 • m1 and T (b) = v−1β−1(b). Note T 2 = Id and
T (λ) = T ◦ λ ◦ T .

Given a (A,α, u)–(B, β, v) form, (M,λ), we define a new form, T (λ), on M
following Wall [26] by

T (λ)(m1,m2) = v−1β−1(λ(m2,m1 · u)).

Note that T (T (λ)) = λ, T (λ) = λ iff λ is bihermitian.
Given any (A,α, u)–(B, β, v) form, (M,λ) there is a map of B–A bimodules

ad(λ):M −→ HomB(M,B)t
−1

defined by
ad(λ)(m1)(m2) = λ(m2,m1).

We say that a form is nonsingular if ad(λ) is an isomorphism.
We define the orthogonal sum of forms as usual: if (M,λ) and (N,µ) are two

(A,α, u)−(B, β, v) forms then λ ⊥ µ is defined by

(λ ⊥ µ)(m1 ⊕ n1,m2 ⊕ n2) = λ(m1,m2) + µ(n1, n2).

Note that λ ⊥ µ is non–singular iff λ and µ are.
Another notion of sum starts with two (A,α, u)−(B, β, v) forms on M , say µ

and λ. Define (M,µ+λ) by the formula (µ+λ)(m1,m2) = µ(m1,m2)+λ(m1,m2).
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The set of (A,α, u)–(B, β, v) forms on M is an abelian group, denoted Sesq(M).
The involution T acts on Sesq(M).

As an example, we compute this group for the free B–A bimodule.

(1.B.1) Example: Let R be a commutative ring with involution r → r̄ and
suppose A and B are R–algebras such that α(r · 1) = r̄ · 1 and β(r · 1) = r̄ · 1. If
F = B ⊗R A is the free B–A bimodule, then the map Φ:Sesq(F ) → HomR(A,B)
defined by Φ(λ)(a) = λ(1⊗a, 1⊗1) defines a Z/2Z–equivariant isomorphism, where
Z/2Z acts on HomR(A,B) by defining T (f)(a) = v−1β−1(f(u−1α−1(a))) for all
a ∈ A.

Next we define the notion of a metabolic form. Given an (A,α, u)–(B, β, v) form
(BMA, λ), define a form, denoted Meta(λ), on M ⊕HomB(M,B)t

−1
by

Meta(λ)[(m1, f1), (m2, f2)] = λ(m1,m2) + f2(m1) + v−1β−1f1(m2 · u−1).

A metabolic form is any form that is isometric to Meta(λ) for some λ . A hyperbolic
form is just a metabolic form with λ = 0. Any metabolic form is nonsingular and
T (Meta(λ)) = Meta(T (λ)) . Hence, the form λ is bihermitian, iff Meta(λ) is.

Next we define Lagrangians. Given an (A,α, u)–(B, β, v) form (BMA, λ) we say
that a bi–summand L ⊂ M is a Lagrangian if the form restricted to L is 0 and
if the inclusion of L into its perpendicular subspace is an isomorphism. Suppose
λ is nonsingular, M = P ⊕ L as B−A bimodules and L is a Lagrangian. Then
λ ∼= Meta(λ|P ) where the isometry is given by F :P ⊕ L −→ P ⊕HomB(P,B)t

−1

defined by F (p,m) = (p, ad(λ)(m)) for all p ∈ P and m ∈ L. In particular, if λ is
nonsingular, (M,λ) ⊥ (M,−λ) is isomorphic to Meta(λ) since the diagonal copy of
M is a Lagrangian.

We have the usual equation

Meta(λ) ⊥Meta(λ+ γ) ∼= Meta(λ) ⊥Meta(γ)

where λ and γ are biforms on the same module, M . If M∗ = HomB(M,B)t
−1

, the
isometry is given by F :M ⊕M∗ ⊕M ⊕M∗ −→ M ⊕M∗ ⊕M ⊕M∗ defined by
F (m, f, n, g) = (m+n, f, n, g−f −ad(λ)(m)) . In particular, in any Grothendieck–
type construction, all metabolics on the same module are equivalent.

Not all metabolics however are isometric, and we explore the relationship. Recall
Z/2Z acts on Sesq(M) via T . Any bihermitian form, λ, on M determines an
element

[λ] ∈ Ĥ0(Z/2Z;Sesq(M))

and [λ1] = [λ2] implies that Meta(λ1) and Meta(λ2) are isometric. Indeed, if
λ2 = λ1 + φ + T (φ), the map F :M ⊕HomB(M,B)t

−1 −→ M ⊕HomB(M,B)t
−1

defined by F (m, f) = (m, f − ad(φ)(m)) satisfies

Meta(λ2)(F (m1, f1), F (m2, f2)) = Meta(λ1)((m1, f1), (m2, f2)).

The following properties are easily checked.
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(i) [λ1 + λ2] = [λ1] + [λ2]

(ii) Ĥ0(Z/2Z;Sesq(M ⊕N)) ∼= Ĥ0(Z/2Z;Sesq(M))⊕ Ĥ0(Z/2Z;Sesq(N))

(iii) [λ1 ⊥ λ2] = ([λ1], [λ2]) under the decomposition in (ii),

Given an (A,α, u)–(B, β, v) form (BMA, λ), and a (B, β, v)–(C, γ, w) form (CNB , µ),
define the tensor product biform

(µ⊗ λ): (N ⊗B M)⊗A (N ⊗B M)t −→ C

by the formula

(µ⊗ λ)(n1 ⊗m1, n2 ⊗m2) = µ(n1 · λ(m1,m2), n2).

Note that T (µ ⊗ λ) = T (µ) ⊗ T (λ); (µ1 ⊥ µ2) ⊗ λ = µ1 ⊗ λ ⊥ µ2 ⊗ λ ; µ ⊗ (λ1 ⊥
λ2) = µ ⊗ λ1 ⊥ µ ⊗ λ2; if µ is bihermitian nonsingular, then µ ⊗ Meta(λ) is
isometric to Meta(µ⊗ λ); and if λ is bihermitian nonsingular, then Meta(µ)⊗ λ is
isomorphic to Meta(µ⊗ λ). The isometry between Meta(µ)⊗ λ and Meta(µ⊗ λ)
is given by Id⊕F :N ⊗BM ⊕N ⊗BHomB(M,B)t

−1 −→ N ⊗BM ⊕ (HomC(N ⊗B
M,C))t

−1
where F is defined by F (n⊗f)(n1⊗m) = ad(µ)(n)(n1 ·f(m)). The map

G: (HomC(N,C))t
−1 ⊗BM −→ (HomC(N ⊗BM,C))t

−1
defined by G(f ⊗m)(n⊗

m1) = f(n · ad(λ)(m)(m1)) can be used as above to define an isometry between
µ⊗Meta(λ) and Meta(µ⊗ λ).

From these results it follows that if µ and λ are bihermitian, then so is µ ⊗ λ,
and by reducing to the metabolic case it follows that the tensor product of any two
bihermitian nonsingular biforms is nonsingular.

With these definitions it is straightforward to extend our linear Morita theory
to the quadratic case. See also [9] , [10] and [12] .

(1.B.2) Definition: Let R be a commutative ring with involution −:R → R.
Then (R,−)−Morita is the category with

objects :(R,−)–algebras, i.e. rings with antistructure (A,α, u) where A is an
R–algebra and

α(ra) = r̄α(a) for all a ∈ A and all r ∈ R .

maps : if (A,α, u) and (B, β, v) are (R,−)–algebras, then

Hom(R,−)−Morita((A,α, u), (B, β, v))

is the Grothendieck group, using orthogonal sum, of all nonsingular, bihermitian
(A,α, u)–(B, β, v) forms. Composition is given by the tensor product of forms. As
usual we add a zero object to make (R,−)−Morita into an additive category. The
identity morphism in Hom(R,−)−Morita((A,α, u), (A,α, u)) is given by the class of
the biform µ:A⊗At → A defined by µ(a1 ⊗ a2) = a1α

−1(a2).
The final choice of morphisms, non–singular bihermitian biforms, is dictated by

our desire to have our category act on as many “quadratic” functors as possible.
See 1.B.8 for some examples.
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For use below, we remark that we have quadratic (B, β, v)–(A,α, u) forms by
mimicking Wall [26] , and that these form a symmetric monoidal category under
orthogonal sum, denoted Quad((B, β, v)–(A,α, u)).

Define a functor from the category of (R,−)–algebras and antistructure preserv-
ing R–algebra maps to (R,−)−Morita by sending an R–algebra with antistructure,
(A,α, u) to itself and sending f : (A,α, u) −→ (B, β, v) to the form λ:B⊗Bt → B de-
fined by λ(b1⊗b2) = b1·β−1(b2). The QuillenK–theory of Quad((B, β, v)−(R,−, 1))
is a functor on the category of (R,−)–algebras and R–algebra maps which factors
through (R,−)−Morita via this functor.

The antistructures that we wish to deal with in the finite group case are of a
very special type. We define a geometric antistructure on G as a 4–tuple (G,ω, θ, b),
where ω ∈ Hom(G,±1), θ ∈ Aut(G) and b ∈ G satisfy the relations

(i) ωθ(g) = ω(g) for all g ∈ G,
(ii) θ2(g) = b−1gb for all g ∈ G,
(iii) θ(b) = b and ω(b) = +1.

The associated anti–automorphism on RG is defined by the formula

α(
∑

rgg) =
∑

r̄gω(g)θ(g−1).

An orientation for a geometric antistructure is a unit ε ∈ R such that ε̄ = ε−1.
The associated antistructure on RG consists of the associated anti–automorphism
and the unit

u = ε · b .

The case in which θ is the identity and b is the identity element in the group,
denoted e, is the most important case in ordinary surgery theory, but other geo-
metric antistructures arise in codimension 1 splitting problems (see e.g. [12, p.55
and p.110]).

Before defining the quadratic analogue of RG−Morita we need to introduce a
hermitian structure on finite bisets. Let H1 and H2 be finite groups, each with a
geometric antistructure, (θH1

, ωH1
, bH1

) and (θH2
, ωH2

, bH2
). Let α1 ( resp. α2 )

denote the associated anti–homomorphism on RH1 ( resp. RH2 ). Fix an orienta-
tion ε ∈ R and let u1 = ε · bH1

( resp. u2 = ε · bH2
). Define a biset form on a

finite H2–H1 biset X as a pair consisting of a bijection θX :X → X and a set map
ωX :X → ±1 which satisfy

(i) ωX(kxh) = ωH2
(k)ωX(x)ωH1

(h) for all k ∈ H2, all x ∈ X, and all
h ∈ H1 ,

(ii) θX(kxh) = θH2
(k)θX(x)θH1

(h) for all k ∈ H2, all x ∈ X, and all
h ∈ H1,

(iii) θ2X(x) = b−1
H2
xbH1

for all x ∈ X .
Associated to each biset form is a bihermitian, nonsingular (RH2, α2, u2)–(RH1,
α1, u1) form whenever X satisfies the condition that |H2

I(x)| ∈ R× for all x ∈ X.
The formula is a bit complicated but the underlying principal is easy. We want
distinct orbits to be orthogonal so we can reduce to irreducible bisets. On one of
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these we are looking at a composition of a transfer and a projection. If the reader
writes out the biform associated to each of these, the formula should follow, but
once again it seems easier for exposition to just produce the formula and check the
properties. To define it, first define a set map

Λ:X ×X −→ RH2.

where we define Λ(x1, x2) as follows. Let `(x2) = bH2
θX(x2)b−1

H1
.

Λ(x1, x2) =

 0 if `(x2) and x1 are not in the same H2–orbit
ω(x2)
|H2

I(x1)|
∑
k otherwise,

where we sum over the set of all k ∈ H2 such that k · `(x2) = x1. Note that this set
is a coset of H2

I(x1).
We can extend Λ to RX×RX using sesquilinearity, and it is straightforward to

check that we get a bihermitian (RH2, β, bH2
)–(RH1, α, bH1

) form

λX :RX ⊗RH1
RX −→ RH2.

Note that λX is independent of the choice of orientation ε. Also note that (ω, θ, b)
gives a biset form on G considered as a G–G biset. The associated form on RG is
the form which gives the identity morphism in (R,−)−Morita.

To check that λ is nonsingular, first choose a set {xi} of one xi from each H2–
orbit of X. For each xj define an RH2 module map δx

j
:RX → RH2 by

δx
j
(xi) =

{
0 if i 6= j

1
|H2

I(xi)|
∑
k if i = j

where we sum over k ∈ H2
I(xi). It is easy to see that the set {δx

j
} is a basis for

HomRH2
(RX,RH2) as an RH2–module. Since ad(λ)(b−1

H2
xjbH1

) = ω(xj)δx
j
, λ is

nonsingular.
The set of biset forms is a monoid under disjoint union and the (RH2, α2, u2)–

(RH1, α1, u1) form associated to the disjoint union of two biset forms is just the
orthogonal sum of the (RH2, α2, u2)–(RH1, α1, u1) forms associated to the two biset
forms.

Given an H1–H2 biset form (X, θX , ωX) and an H2–H3 biset form (Y, θY , ωY ),
define the composite biset form to be the H1–H3 biset form (Z, θZ , ωZ), where
Z = X ×H2 Y , θZ(x, y) = (θX(x), θY (y)) and ωZ(x, y) = ωX(x) · ωY (y).

A useful point to check is that the form on the composite of two biset forms is
equal to the composite of the forms. With notation as in the last paragraph, we
need to verify the equation

λZ((x1, y1), (x2, y2)) = λX(x1 · λY (y1, y2), x2).

Check that `(x2, y2) = (`(x2), `(y2)), and recall (1.A.3). If y1 is not in the same H2–
orbit as `(y2) then λY (y1, y2) = 0. But then `(x2, y2) is not in the same H3–orbit
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as (x1, y1), so both sides of our equation are 0. If `(y2) is in the same H2–orbit
as y1, then λY (y1, y2) is a multiple of

∑
k where the sum runs over all k ∈ H2

for which k · `(y2) = y1. Fix one such k, say k̂. Then λX(x1 · λY (y1, y2), x2) is a
multiple of

∑
h∈I λX(x1 · h · k̂, x2) where I = H2

I(y1). This in turn is a multiple of∑
λX(x1 · h · k̂, x2) where now we sum over one representative from each coset of

H2
I(y1)/(IH 2(x1) ∩H2

I(y1)). This is non–zero iff x1 · k̂ and `(x2) are in the same
H3–orbit iff (x1, y1) and `(x2, y2) are in the same H3–orbit, so at least both sides
of our equation vanish or not together. We leave it to the reader to keep track of
multiplicities and complete the proof.

(1.B.3) Definition: Let (θ, ω, b) be a geometric antistructure and let (R,−) be a
commutative ring with involution. Define a category (RG, θ, ω, b)−Morita as the
Add construction applied to the following category. The objects are finite groups H
with geometric antistructure (θH , ωH , bH) where H is isomorphic to a subquotient
K/N of G with K a θ–invariant subgroup of G; N a θ–invariant subgroup of G,
normal in K, with N ⊂ kerω; and b ∈ K. The geometric antistructure on G
induces one on K/N and we require the isomorphism between H and K/N to take
one geometric antistructure to the other.

The morphism group

Hom(RG,θ,ω,b)−Morita((H1, θH1
, ωH1

, bH1
), (H2, θH2

, ωH2
, bH2

))

is defined by a Grothendieck construction: take the set of isomorphism classes
of finite biset forms , X, such that |H2

I(x)| ∈ R× for all x ∈ X. This set
is a monoid under disjoint union. Form formal differences, and set (X, θX , ωX)
equal (Y, θY , ωY ) provided (RX,λX) is isomorphic to (RY, λY ) as (RH2, α2, bH2

)−
(RH1, α1, bH1

) forms.
In the case that θ is the identity and b = e, we denote the above category by
(RG,ω)−Morita.

(1.B.4) Remark: Each orientation ε defines a functor, the R–group ring functor,
from (RG, θ, ω, b)−Morita to (R,−)−Morita.

(1.B.5) Quadratic Generalized Induction and Restriction Maps:
The generalized induction and restriction maps defined in the linear case in

(1.A.8) have quadratic analogues. If H is a θ– invariant subgroup of K with b ∈ H,
then the θ and the ω for K give us an obvious biset form on K considered as either a
K–H biset or an H–K biset. Hence we have induction and restriction maps which
we denote as before, suppressing the biset form data in our notation.

If N is a normal subgroup of K which is θ– invariant and contained in kerω,
then K/N has an obvious geometric antistructure which also gives K/N a biset
form both as a K−K/N biset and as a K/N–K biset. Hence we get generalized
induction and restriction maps in (RG, θ, ω, b)−Morita whenever |N | ∈ R×.

In (RG,ω)−Morita the only conditions we need are that N ⊂ kerω and |N | ∈
R×. If ω is trivial, then we have generalized restriction maps in (RG,ω)−Morita
whenever we have them in RG−Morita. These two categories are not isomorphic
since the forms need not be isomorphic just because the underlying modules are.
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To obtain a good structure theorem for the “basic” groups, we restrict attention
in this section to Detection and Generation Theorems for the category (RG,ω)−
Morita.

(1.B.6) Definition: Suppose thatG is a p– hyperelementary group equipped with
an orientation character ω:G → {±1}. Then G is ω–basic if all abelian subgroups
of kerω which are normal in G are cyclic. ( See (3.B.2) for a classification of these
groups. )

(1.B.7) Theorem: Let (G,ω) be a hyperelementary group with an orientation
character, and let R be a commutative ring with involution, −, such that |G| is a
unit in R. Then, in (RG,ω)−Morita,

(i) The Quadratic Detection Theorem: the sum of the generalized restriction
maps

Res:R[G] −→ ⊕
{
R[H/N ]:

H/N is an ω–basic subquotient
of G with ω trivial on N

}
is a split injection, and

(ii) The Quadratic Generation Theorem: the sum of the generalized induction
maps

Ind:⊕
{
R[H/N ]:

H/N is an ω–basic subquotient
of G with ω trivial on N

}
−→ R[G]

is a split surjection.

A more explicit version is available (see 4.B.7). The result itself is proved in
4.B.8.

(1.B.8) Applications: We can apply 1.B.7 to any additive functor

J : (RG,ω)−Morita −→ A

whenever |G| ∈ R×. As examples, set J(R[G], αω, 1) equal to:

(i) Ĥj(Z/2Z;Kn(RG)) where the action of Z/2Z on Kn(RG) is induced by the
functor

αω: RGP −→ RGP

where αω applied to the finitely generated, projective left module P , is just
the module (HomRG(P,RG))t,

(ii) L(j)
n (RG,ω), (where for j = 2, 1, 0 these are just LSn , LKn (as in [27] ), and

Lpn),
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(iii) LSn(Z[ 1
m ]G → Q̂mG,ω) ≈←− LYn (ZG → ẐmG,ω) where m = |G|, and Y =

{±Gab, SK1} ( recall that we have an exact sequence

· · · → LYn (ZG,ω)→ LYn (ẐmG,ω)→ LYn (ZG→ ẐmG,ω)→ · · ·

and these are the LYn groups studied in [28] ),

(iv) LKn (Z[ 1
m ]G → Q̂mG,ω) ≈←− LX0

n (ZG → ẐmG,ω) where X0 denotes the tor-
sion subgroup of K0, and the rest of the notation is the same as in (iii),

(v) Kn(Quad(RG,αω, ε)), the Quillen K–theory of the symmetric monoidal cat-
egory of quadratic (RG,αω, ε)−(R,−, ε) forms, where ε ∈ R× is central and
ε̄ = ε,

(vi) GW (G,R), GU(G,R), or Y (G,R) which are defined in Dress [6] .

To see that the functors L(j)
n (RG,ω) factor through (R,−)−Morita, recall the

definition of these functors in [26] . We see that the Lpn(RG,ω) are the homology
groups of a chain complex where the chain groups are sesquilinear forms and the
boundary maps are of the form 1 ± T . Via tensor product, these complexes are
acted on by bi–hermitian bi–forms, and hence (R,−)−Morita acts on Lpn(RG,ω).
The remaining L(j)

n (RG,ω) are defined [31] , [32] in a sufficiently functorial manner
that (R,−)−Morita continues to act. This factorization is also discussed in [11]
and [10] .

Likewise the functors in (iii) and (iv) are functors out of (R,−)−Morita. The
functors in (vi) can be checked by hand to factor through (RG,ω)−Morita.

C. The Witt Case
In this section we explain our results for general geometric antistructures. In

order to obtain a good description of the associated “basic” groups, two changes are
needed. First of all, we restrict attention to the case of 2–hyperelementary groups.
Then we only get information in the Witt categories associated to the quadratic
Morita categories as explained below.

We begin by defining some new maps.

(1.C.1) Definition: Let (A,α, u) be a ring with antistructure, and let c ∈ A be
a unit in A. Define a new antistructure on A by scaling by c as follows. The new
anti–automorphism is αc and the new unit is u(c) defined by

αc(a) = c−1α(a)c for all a ∈ A
u(c) = uα(c−1)c.

There is a (A,αc, u(c))–(A,α, u) biform defining an isomorphism in (R,−)−Morita
between (A,α, u) and (A,αc, u(c)) called the scaling isomorphism given by

λ(a1 ⊗ a2) = a1α
−1(a2)α−1(c).
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We apply this to the oriented geometric antistructure case. Let (G, θ, ω, b, ε)
be a group with geometric antistructure, and let (α, u) denote the associated anti-
structure. Let c ∈ G be an element. Define a new oriented geometric antistructure
(θc, ω, b(c), ε(c)) by

θc(g) = c−1θ(g)c for all g ∈ G,
b(c) = bθ(c)c
ε(c) = ω(c) · ε.

Notice that the antistructure associated to the scaled oriented geometric antistruc-
ture is the scale by c of (α, b).

Given a map from (A,αc, u(c)) to (B, β, v), we get a twisted map from (A,α, u) to
(B, β, v) by composing with the scaling isomorphism on A using c. This construction
yields a twisted restriction map. Given a map from (A,α, u) to (B, βc, v(c)), we get
a twisted map from (A,α, u) to (B, β, v) by composing with the scaling isomorphism
on B using c−1. This construction yields a generalized induction map.

We have twisted generalized induction and restriction maps from this procedure
whenever we have subgroups N � H of G and a c ∈ G such that H and N are
θc–invariant, b(c) ∈ H, N ⊂ kerω, and |N | is a unit in R in the induction case.

We also need a new category.

(1.C.2) Definition: Define a category (R,–)–Witt as the category with the same
objects as (R,−)−Morita and with

Hom(R,−)−Witt((A,α, u), (B, β, v)) = Hom(R,−)−Morita((A,α, u), (B, β, v))/=

where = is the subgroup generated by the metabolic forms in Hom(R,−)−Morita(
(A,α, u), (B, β, v)). Composition is defined since λ⊗Meta(µ) ∼= Meta(λ⊗ µ) and
Meta(λ)⊗ µ ∼= Meta(λ⊗ µ) for nonsingular, bihermitian forms.

Notice that there is an obvious forgetful functor from (R,−)−Morita to (R,−)–
Witt, so we have generalized induction and restriction maps. Furthermore, we also
have twisted induction and restriction maps.

Our first result is a Detection/Generation theorem in (R,−)−Morita that uses
fewer isomorphism classes of groups but twisted maps (compare 1.B.7).

(1.C.3) Theorem: Let G be a 2–hyperelementary group with orientation ω.
Then

(i)

(RG,ω) Res−→ ⊕(R[H/N ], θc, ω, b(c), ω(c))

is a split injection in (R,−)−Morita, where we sum over subquotients, H/N ,
of G such that N ⊂ kerω and H/N is either basic with θ trivial or of the form
((index 2 in a basic) × C(2)−) with θ acting non–trivially on the C(2)−.

(ii)

⊕(R[H/N ], θc, ω, b(c), ω(c)) Ind−→ (RG,ω)
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is a split surjection in (R,−)−Morita, where we sum over the same subquo-
tients as in (i).

Remark: A more precise theorem is available at the end of section 4.C where we
also explain how to pick the c associated to each subquotient.

(1.C.4) Definition: A 2–hyperelementary group G with geometric antistructure
is calledWitt–basic provided all abelian normal subgroups ofG which are θ–invariant
and contained in kerω are cyclic. These are classified in Theorem 3.C.1

(1.C.5) Theorem: Let G be a 2–hyperelementary group with geometric anti-
structure (θ, ω, b) and orientation ε. Assume that |G| ∈ R×. Then

(i) The Twisted Detection Theorem: the sum of the twisted restriction maps

Res: (R[G], θ, ω, b, ε) −→ ⊕(R[H/N ], θ′, ω′, b′, ε′)

is a split injection in (R,−)−Witt, and

(ii) The Twisted Generation Theorem: the sum of the twisted induction maps

Ind:⊕(R[H/N ], θ′, ω′, b′, ε′) −→ (R[G], θ, ω, b, ε)

is a split surjection in (R,−)−Witt,

where in both cases we sum over triples (H,N, c) with H/N Witt–basic and for
which the twisted restriction and induction maps are defined.
As usual, a more precise version is available, 4.C.4.

The functors in (1.B.8) (i), (ii), (iii) and (iv) all factor through (R,−)–Witt.

(1.C.6) Non-Example: Lp0(Z[C(2)× C(4)]) is not detected by Witt–basic sub-
quotients, so we need |G| to be a unit in R.

In sections 6 and 7 we introduce methods for proving detection theorems for
functors that do not satisfy the assumption that |G| is a unit in R. The following
theorems are applications of this method. Other applications have appeared in [13]
.

(1.C.7) Theorem: Suppose G is a finite 2–group. Then the sum of the generalized
restriction maps is an injection

Res:Lpn(ZG) −→
⊕

N �H ⊂ G

Lpn(Z[H/N ])

where we sum over all basic subquotients of G.

(1.C.8) Theorem: Suppose G is a finite 2–group with orientation character ω.
Then the sum of the generalized restriction maps is an injection

Res:Lpn(ZG,ω) −→
⊕

N �H ⊂ G

Lpn(Z[H/N ], ω)

where we sum over all subquotients for which ω is trivial on N , and for which H/N
is isomorphic to
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(i) an ω–basic subquotient, or

(ii) C(2)×C(4) with ω non–trivial, but trivial on all elements of order 2 ( we will
denote this as C(2)× C(4)− ), or

(iii) 〈t0, t1, g | t20 = t41 = g2 = e, gt1g
−1 = t1, gt0g

−1 = t0t
2
1, [t0, t1] = e〉, and

ω(t0) = ω(g) = 1, ω(t1) = −1.

The group in (iii) is just a semidirect product (C(2)×C(4)−)×C(2) and is also
the central product over C(2) of D8 and C(4)−. We denote it hereafter by M16.

Section 2: Representations of Finite Groups.
The first goal of this section is to define imprimitive induction and identify a

special case in which it always occurs. Then we study the representation theory of
basic groups, leading to a definition of the basic representation of a basic group.
Finally we prove that any irreducible rational representation of a p–hyperelementary
group, G, can be induced from some basic subquotient of G.

Let k be a field of characteristic zero. For any irreducible k-representation
ρ:G→ GL(V ) of a finite group G we let Dρ = EndkG(V ) be the associated division
ring.

Suppose ρ0:H → GL(W ) is a k- representation for a subgroup H, such that
kG ⊗kH W ∼= V is an irreducible k-representation of G. Then we get an injective
ring map

IdkG ⊗ :Dρ0
= EndkH(W )→ EndkG(V ) = Dρ.

(2.1) Lemma: With the notation above, if V |H contains just one copy of W then
IdkG ⊗ is an isomorphism.

Proof: Let ε: kG ⊗ V |H → V be the evaluation map. Consider the commutative
diagram:

HomkH(W,V |H)
γ→ Hom(kG⊗W,kG⊗ V |H) ε∗→ HomkG(kG⊗W,V )

↑ α ↑ β

Dρ0
= HomkH(W,W ) δ→ Hom(kG⊗W,kG⊗W ) = Dρ

where the vertical maps α and β are induced by the inclusion of W in V |H , and γ,
δ are induced by Idkg ⊗ . The hypotheses imply that α is an isomorphism. By
Frobenius reciprocity (see [3 , 10.8]), the composite ε∗ ◦γ is an isomorphism. Since
kG⊗W ∼= V is irreducible, the composite ε∗ ◦ β is also an isomorphism. Thus δ is
an isomorphism. 2

(2.2) Definition : Let ρ be an irreducible rational representation of a finite group
G. We say that ρ is imprimitive if there exists a subgroup H and a rational repre-
sentation η ofH such that η|G = ρ and the map IdQG⊗ is an isomorphism. In this
situation, we say that ρ is imprimitively induced from H and that ρ is imprimitively
induced from η. If ρ is not imprimitive then it is primitive.

17



In section 1 we defined a generalized induction for an irreducible rational rep-
resentation on a subquotient H/N of G. First we pull–back the representation on
H/N to one on H, and then we induce the representation on H up to G. We say
that a generalized induction is imprimitive whenever the induction stage is imprim-
itive. Usually we will just say induction even if we mean generalized induction. By
examining the starting group, the reader can deduce which one is meant.

The following variant of Clifford’s theorem will be useful to us.

(2.3) Theorem: Let ρ be an irreducible Q–representation of a finite group G, and
let N be a normal subgroup. Then

ρ|N = ` · (η1 + · · ·+ ηr)

where the ηi are all distinct irreducible Q–representations. The group G acts on the
vector space Vρ, and must permute the N–invariant subspaces, ` · ηi, transitively.

Let H be the isotropy subgroup of ` · η1 Then N ⊂ H and |G:H| = r. Further-
more, there is a Q– representation, η̃1 of H with η̃1|N = ` · η1; and η̃1|G = ρ. This
induction is always imprimitive.

Proof: All but the last two lines are a statement of the standard Clifford Theorem
( see [3 , 11.1 p.259] ). That the induction is imprimitive follows immediately from
Lemma 2.1. 2

Our next result is essentially due to Witt [30] .

(2.4) Theorem: Let G be a finite group which has an abelian, normal subgroup
which is not cyclic and a faithful, irreducible Q–representation ρ. Then there is a
normal elementary abelian p–group, A, for some prime p, of rank ≥ 2. Given any
such A there is an index p subgroup E, of A, such that E is not normal in G and
such that ρ is induced imprimitively from the normalizer of E.

Proof: For some prime p the subgroup of elements order ≤ p in the promised normal
abelian subgroup of G which is not cyclic will be elementary abelian of rank ≥ 2.
Fix such a p and note that this subgroup is an elementary abelian subgroup of rank
≥ 2 which is normal in G.

Let A denote any noncyclic normal elementary abelian subgroup of G. Recall
that the irreducible Q–representations of A are determined by their kernels. The
possible kernels are all of A and any index p subgroup.

Apply Theorem 2.3 and let ρ|A = ` · (χ1 + · · ·+ χr). Since ρ is faithful and A
is normal, the kernel of χ1 can not be all of A, and so it is some index p subgroup
E. The same argument shows that E is not normal in G. Since kernels determine
representations for A, the H constructed in Theorem 2.3 is just the normalizer of
E in G. By 2.3 again, the induction is imprimitive. 2

As we will be working with p–hyperelementary groups, we recall some facts
about their structure. First, G = C ×P with C cyclic of order prime to p and P a
p–group. Let ψ:P → Aut(C) denote the action map.
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(2.5) LetH be a proper subgroup of G with index a power of p. Then the normalizer
of H is strictly larger than H.

(2.6) A p–subgroup H is normal in G iff H ⊂ kerψ and H is normal in P . If H is
non–trivial and normal in G, then it contains a central element of order p.

(2.7) Proposition: Let G be a p–hyperelementary group with an abelian normal
subgroup which is not cyclic. Then G contains a subgroup K ∼= C(p)×C(p) which
is normal in G.

If G0 denotes the centralizer of K in G, then

(i) either G = G0 or

(ii) G0 has index p in G and the conjugation action of G/G0 on the cyclic sub-
groups of K fixes one of them and is transitive on the remaining ones.

Proof: Let E be the subgroup of elements of order ≤ p in the normal, non–cyclic
abelian subgroup of G. By 2.6, E contains a subgroup C0

∼= C(p), central in G.
Apply the same argument to E/C0 in G/C0 and let K be the inverse image in G
of this C(p) in G/C0. Note K ⊂ E so it is a rank 2 elementary abelian p–group,
which is normal in G.

Since K is normal in G, so is G0. Note C centralizes K since both are normal,
hence the index of G0 in G is a pth power. Consider the conjugation action of G/G0

on K. Since K has rank 2, Aut(K) ∼= GL(2, Fp) and |GL(2, Fp)| = (p− 1)(p2 − p),
so G/G0 is trivial or C(p). In the first case there is nothing to prove, and the
result in the second case is a standard result on the action of Aut(K) on the cyclic
subgroups of K. 2

We return to representation theory for p– hyperelementary groups. Theorem
2.4 and Proposition 2.7 suggest that we should study induction when we have a
normal C(p) × C(p) subgroup. Let IrrQ(G) denote the set of irreducible rational
representations of G; if N ⊂ H are subgroups of G, let IrrQ(G)N⊂H = {ρ ∈
IrrQ(G) | N = ker ρ ∩H}.

(2.8) Theorem: Let G be a non–basic p–hyperelementary group, and consider
any normal subgroup K ∼= C(p)×C(p). Let C0, · · · , Cp denote the cyclic subgroups
and arrange notation so that C0 is central. Let G0 denote the centralizer of K in
G. Consider any ρ ∈ IrrQ(G).

(i) If K is central in G then ρ|K = ` ·φ and K ∩ ker ρ = kerφ = K,C0, C1, . . ., or
Cp. Hence IrrQ(G) = IrrQ(G)K⊂K⊥⊥IrrQ(G)C0⊂K⊥⊥ · · ·⊥⊥IrrQ(G)Cp⊂K .

(ii) If K is not central then K ∩ ker ρ = K,C0, or {e}. If K ∩ ker ρ = {e}, then

ρ|
G0

=
∑

x∈G/G0

ψx
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and each K ∩ kerψx is a different Ci where 1 ≤ i ≤ p. Hence IrrQ(G) ∼=
IrrQ(G)K⊂K ⊥⊥ IrrQ(G)C0⊂K ⊥⊥ IrrQ(G0)C1⊂K , where the embedding of
IrrQ(G0)C1⊂K in IrrQ(G) sends ρ0 to ρ0|G, which is always an imprimitive
induction.

Proof: Let ψE denote the irreducible Q–representation of K with kernel E, and
recall that the choices for E are K,C0, C1, . . . , Cp.

Apply Clifford’s Theorem (2.3) to ρ and K. If K is central then no two distinct
representations of K are conjugate, so ρ|K = `·ψE for some E. Hence K∩ker ρ = E
and the result follows.

If K is not central, then the distinct representations which are conjugate are
just the ones whose kernels are Ci for i with 1 ≤ i ≤ p. Hence ρ|K = ` · ψ where ψ
is either ψK ( iff K ∩ ker ρ = K ); ψC0 ( iff K ∩ ker ρ = C0 ); or ψ =

∑p
i=1 ψCi ( iff

K ∩ ker ρ = {e} ).
If K ∩ ker ρ = {e}, let φ denote an irreducible constituent of ρ|

G0
. Frobenius

reciprocity implies that φ|K and
∑p
i=1 ψCi have a common constituent. Since G0

has a central C(p)×C(p), apply part (i) to ψ to see that K∩kerψ = C1, . . . , or Cp.
Now apply 2.3 to ρ restricted to G0. By 2.5, the conjugates of φ have different

kernels and so are distinct. Hence ρ|G0 = ` ·
∑
x∈G/G0

ψx and an easy degree
argument shows that ` = 1. 2

Finally, we take up the representation theory of basic groups. As we will see
shortly, basic groups are contained in the broader class defined next.

(2.9) Definition: A group G is an F– group if it contains a self–centralizing cyclic
subgroup A, i.e. A is normal and the map G/A→ Aut(A) induced by conjugation
is injective.

The first result, observed by Fontaine [7, Lemma 3, p.153] is

(2.10) Lemma: Any basic p– hyperelementary group is an F–group.

Proof: To fix notation, let G = C ×P with C cyclic of order prime to p, and P
a p–group. Let A be a maximal element of the set of normal cyclic subgroups of
G containing C (ordered by inclusion). Note G/A is a p–group, and consider the
kernel of the action map G/A → Aut(A). If it is non–trivial let E be a cyclic
subgroup of it. Let B ⊂ G denote the inverse image of E ⊂ G/A in G. Then B is
clearly normal; it is abelian since any extension of a cyclic by a C(p) with trivial
action is abelian, and it is non–cyclic by maximality. This contradicts the fact that
G is basic. 2

Hence we study representations of F–groups. The key step involves the relation-
ship between complex representations, rational representations, and Galois groups
which we quickly review ( or see Serre [23, Chapter 12] ).

Let ψ be an irreducible representation of G over the complex numbers C. The
values of the character of ψ on the elements of G are algebraic integers, and we
let Q(ψ) denote the finite extension field of the rationals, Q, generated by these
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values. If τ ∈ Gal(Q(ψ)/Q) then ψτ will denote the Galois conjugate represent-
ation, i.e. the representation whose character is just τ applied to the value of the
character for ψ. The orthogonality relations for complex characters show that ψτ is
an irreducible representation and the ψτ for different τ are distinct. Form the rep-
resentation

∑
τ∈Gal(Q(ψ)/Q) ψ

τ . This has a rational character but may not be the
complexification of a rational representation. There does exist a minimal integer,
mψ > 0, called the Schur index, so that

mψ ·
∑

τ∈Gal(Q(ψ)/Q)

ψτ

is the complexification of an irreducible Q– representation, and every irreducible
Q–representation arises in this fashion. Finally the division algebra, Dψ, associated
to ψ has center Q(ψ) and index mψ, so dimQ(Dψ) = m2

ψ · dimQ(Q(ψ)).
Let A denote a cyclic group of some order. It has ϕ(|A|) faithful irreducible

complex representations, all of which are Galois conjugate. Let a ∈ A be a genera-
tor, and let ξ〈a〉 denote the faithful irreducible complex representation which sends
a to exp( 2πi

|A| ). The sum of these is the complexification of a rational represent-
ation so A has a unique irreducible faithful rational representation, denoted ρA.
Moreover, the automorphism group of A, Aut(A) acts simply transitively on the
faithful irreducible complex representations of A, and there is a unique isomorphism
Aut(A)→ Gal(Q(ξ〈a〉)/Q) which identifies the two actions on ξ〈a〉.

We apply these remarks to prove

(2.11) Theorem: Let G be an F–group with A ⊂ G a self–centralizing cyclic
subgroup. There exists a unique faithful irreducible Q–representation, ρG, of G
and ρG is the only irreducible Q–representation of G which is faithful on A.

Moreover, ρG satisfies the equation ρG|A = m · ρA , where m is the Schur index
of any irreducible complex constituent of ρG.

Proof: Pick a generator a ∈ A. Let κ = ξ〈a〉|G. By the Mackey irreducibility
criterion ( [23, Section 7.4 Corollary] ), κ is irreducible provided all the conjugates
of ξ〈a〉 are distinct. But G/A embeds in Aut(A) via the action map, and the action
of Aut(A) on the irreducible faithful complex representations of A is faithful. Hence
κ is irreducible. Moreover Q(κ) is the subfield of Q(ξ〈a〉) fixed by G/A considered
as a subgroup of the Galois group of Q(ξ〈a〉) over Q via the above identifications.
Hence Gal(Q(κ)/Q) is naturally identified with Aut(A)/(G/A).

This means that the Galois average of κ has a rational valued character and that
this representation restricted to A is just the complexification of ρA. Let ρG denote
the associated irreducible Q–representation. Frobenius reciprocity shows that

ρA|G =
|G/A|
m

· ρG, and hence ρG|A = m · ρA.

Let χ be any irreducible Q–representation of G and apply Theorem 2.3 to χ|A.
On A, no two distinct irreducible Q–representations can be conjugate, so χ|A = ` ·ψ
for some irreducible Q–representation ψ of A. If ψ 6= ρA, then χ has a non–trivial
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kernel. If ψ = ρA, then χ = ρG and hence ρG is the unique faithful irreducible
Q–representation of G. 2

(2.12) Definition: Let G be a basic p–hyperelementary group. By Lemma 2.10,
Theorem 2.11 applies to G. We call the representation ρG whose existence and
uniqueness was proved in Theorem 2.11, the basic representation of G.

The major result in the representation theory of p– hyperelementary groups that
we need is

(2.13) Theorem: Let G be a p–hyperelementary group and let ρ be an irreducible
rational representation on G. Then there exist subgroups Nρ �Hρ of G such that
the index of Hρ in G is a pth power; Hρ/Nρ is a basic group; and ρ can be induced
imprimitively from the basic representation of Hρ/Nρ.

Proof: Since imprimitive generalized induction is transitive, it is easy to see that
we can induct on the subquotient structure of G, i.e. we can assume the result for
all proper subquotients of G and we need only show that ρ can be pulled back from
a quotient group of G or else it can be imprimitively induced from a subgroup of
prime power index.

If ρ is not faithful, then it can be induced from a quotient group, so we may as
well assume that ρ is faithful.

If G is not basic, then there is a normal abelian non– cyclic subgroup. But in
this case Theorem 2.8 shows that there is a subgroup H of index p from which we
can imprimitively induce.

If G is basic and ρ is faithful, then ρ = ρG by 2.11, and 1 is a pth power. 2

Remark: In Theorem 2.13, Hρ/Nρ = {e} iff ρ is trivial and Hρ = Nρ = G.
We will need some results later about the sorts of subgroups H of G from which

an imprimitive induction can take place.

(2.14) Proposition: Let G be a p–hyperelementary group and let ρ be an
irreducible Q–representation. Suppose that H is a subgroup from which ρ can be
imprimitively induced. Then there exists a sequence of subgroups H = H0 ⊂ · · · ⊂
Hr = G with each Hi of index p in the next.

Proof: The result follows from 2.5 if we can show that the index of H in G is a pth

power.
Let Vρ denote the vector space for ρ, and recall that Vρ is a free module over the

associated division algebra Dρ. From 2.11, it follows that dimQVρ = pr · dimQDρ.
Let χ be an irreducible Q–representation of H. The last argument shows that

dimQVχ = ps · dimQDχ. If χ is a representation from which ρ can be induced
imprimitively, dimQDχ = dimQDρ. Since dimQVρ = |G:H| · dimQVχ, we see that
|G:H| = pr−s. 2

(2.15) Proposition: Let G be a p–hyperelementary F–group, and let N be an
index p subgroup from which ρG can be induced imprimitively. Then N contains a
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C(p)× C(p) which is normal in G.

Proof: For notation let G = C ×P , with P a p–group and C cyclic of order prime to
p. Let A be a self–centralizing cyclic subgroup of G, and let A0 = N ∩A = ker(A→
G/N). Note either A = A0 or |A:A0| = p. By Theorem 2.3, ρ|N = η1 + · · · ηp,
where the ηi are distinct and conjugate. By Theorem 2.11, ρA|G is a multiple of ρ
and Frobenius reciprocity forces ρA0 |N to contain each of the ηi.

Let L denote the centralizer of A0 in N . Since A0 is normal in G, so is L.
First we show that L 6= A0. Suppose that A0 were self–centralizing in N . Then

by Theorem 2.11 ρA0 |N would be a multiple of ρN and the ηi could not be distinct.
Hence A0 is not self– centralizing in N . It follows that A0 6= A, so |A:A0| = p and
N/A0 → G/A is an isomorphism. Hence N/A0 injects into Aut(A), so it is easy to
see that |L:A0| = p.

From this it follows that L is abelian, and we conclude by showing that L is
not cyclic. Notice that L does not centralize A, and so A does not centralize L.
Consider the action map G/L → Aut(L). By projecting to Aut(A0), we see that
N/L → Aut(L) is injective. While A does not centralize L, it does centralize A0.
This means that A/A0 injects into Aut(L) but its image goes to 0 in Aut(A0).

Hence, if L is cyclic, it is self–centralizing in G. The argument above that
N ∩A 6= A did not depend on which self–centralizing cyclic subgroup of G we began
with, so repeat the argument with L. A contradiction ensues since N ∩L = L, and
so L is not cyclic. 2

(2.16) Corollary: The basic representation of a p–hyperelementary basic group
is primitive.

Section 3: Structure of Basic Groups, ω–Basic Groups and Witt–
Basic Groups.

The goal of this section is to classify the basic groups and their quadratic rel-
atives. We also do some quadratic representation theory that is easier to explain
after we have the classification in hand. Our first goal is the classification theorem
3.A.6 below, but we begin with some lemmas.

A. The Linear Case:

(3.A.1) Proposition: Let T be a finite p–group. If [T, T ] is not cyclic, then [T, T ]
contains a subgroup K ∼= C(p)× C(p) such that K is normal in T .

Proof: There exists C0 ⊆ [T, T ] ∩ Z(T ) where C0
∼= C(p). Let A be a maximal

member of the following set of subgroups

{B ⊆ [T, T ]|C0 ⊆ B,B � T,B is cyclic}.

Consider

0 −→ A −→ T −→ T/A −→ 0
‖ ∪ ∪

0 −→ A −→ [T, T ] −→ [T/A, T/A] −→ 0.
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Since [T, T ] is not cyclic, [T/A, T/A] 6= {e}. Since T/A is a p-group, we can find

C1 ⊆ [T/A, T/A] ∩ Z(T/A)

where C1
∼= C(p).

Let B ⊂ [T, T ] be a subgroup such that

0 −→ A −→ B −→ C1 −→ 0

is exact. Since C1 � T/A, B � T . Consider the action map T/A → Aut(A). Since
Aut(A) is abelian, C1 is in the kernel, i.e. C1 acts trivially on A. Hence B is abelian.
By the maximality of A, B is not cyclic. Hence there exists K ∼= C(p)×C(p) ⊆ B.

Since K is unique in B and B � T , K � T . Since B ⊂ [T, T ], K ⊂ [T, T ]. 2

(3.A.2) Proposition: Suppose we have a diagram of groups

[P, P ] ⊂ A ⊂ T ⊂ P

where P is a p-group and A ∼= C(pn) is self–centralizing in T . Assume that T
contains no subgroup K ∼= C(p)× C(p) which is normal in P .

(i) If p is odd, the group T is cyclic.

(ii) If p = 2, the group T must be isomorphic to one of the following groups:

C(2i), i ≥ 0; Q(2i), i ≥ 3; SD(2i), i ≥ 4; D(2i), i ≥ 3.

(3.A.3) Remark: The list in 3.A.2 (ii) contains one 2-group which is not basic,
namely D(8). Notice that if

P = D(16) = 〈x, y|x8 = y2 = 1, yxy−1 = x−1〉,

then D(8) ∼= 〈x2, y〉, A = 〈x2〉 is self–centralizing in 〈x2, y〉, and [P, P ] ∼= 〈x2〉. Thus
D(8) must be included in the list.

The proof of (3.A.2) uses the following two lemmas:

(3.A.4) Lemma: Suppose ∆ is a p-group which is a subgroup of U = (Z/pnZ)×.
Let α = 1 + pn−1 ∈ U , and assume that α 6∈ ∆. If p is odd, then ∆ = 〈1〉. If
p = 2 and n ≤ 2 then ∆ = 〈1〉. If p = 2 and n > 2 then ∆ is 〈1〉, 〈−1〉 ∼= C(2), or
〈−1 + 2n−1〉 ∼= C(2) .

Proof: Let pU = {β ∈ U |βp = 1} If p is odd, then U is cyclic and pU = 〈1 + pn−1〉.
If p = 2 and n = 1, then U = 〈1〉. If p = 2 and n = 2, then U = 〈−1〉. If p = 2 and
n > 2, then U = C(2)× C(2n−2),

pU = 〈1,−1,−1 + pn−1, 1 + pn−1〉,

and Up ∩ pU = 〈1 + pn−1〉. 2
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(3.A.5) Lemma: Suppose β is a nontrivial element of order p in (Z/pnZ)× ( note
n > 1 ). This describes an action of Z/pZ on Z/pnZ. Then

H2
β(Z/pZ;Z/pnZ) ∼=

{
Z/2Z if p = 2 and β = −1
〈1〉 otherwise

The group H2
β(Z/pZ;Z/pnZ) classifies extensions of Z/pnZ by Z/pZ with given

action. If n > 1 the extension 0→ Z/2nZ → Q(2n+1)→ Z/2Z → 0 represents the
nontrivial element in H2

β(Z/2Z;Z/2nZ), where β = −1.
Proof: Consult Cartan–Eilenberg, [2 ] , for the classification of group extensions
and for the calculation of H2

β(Z/pZ;Z/pnZ). If p is odd, the action given by β fixes
no elements, so the result is clear. If p = 2 and β 6= −1 then compute by hand that
the fixed elements are all norms. If p = 2 and β = −1, both the calculation and the
claim about the extension are straightforward calculations. 2

Proof of (3.A.2): If p = 2 and n = 1 or 2, the result is clear. Hence, if p = 2, we
can assume n > 2.
Claim: There does not exist an element x ∈ T such that xax−1 = a1+pn−1

for all
a ∈ A. Proof of Claim:

Suppose x exists and let Ā = 〈A, x〉. Then (3.A.5) implies that Ā = A×Z/pZ.
If v is a generator of A, then

K = 〈vp
n−1

, x〉 = {ā ∈ Ā | āp = 1} ∼= C(p)× C(p).

Since [P, P ] ⊂ Ā, Ā is normal in P . Since K is characteristic in Ā, we get
that K is normal in P and x does not exist. 2

To finish the proof of (3.A.2) note

(i) (p odd): Lemma (3.A.4) implies A = T .

(ii) (p = 2): Lemma (3.A.4) implies that if A 6= T , then either T/A ∼= 〈−1+2n−1〉
or T/A = 〈−1〉. Lemma (3.A.5) then implies that if T/A = 〈−1+2n−1〉, then
T ∼= SD(2n+1) and if T/A = 〈−1〉, then T ∼= D(2n+1) or Q(2n+1). 2

We can now classify the basic p–hyperelementary groups.

(3.A.6) Theorem [Classification of basic p– hyperelementary groups]
Suppose G = C ×P is a p–hyperelementary group, where P is a p–group, C cyclic,
with p prime to |C|. Let ψ : P −→ Aut(C) be the map induced by conjugation.

(i) If p is odd, then the group G is basic if and only if kerψ is cyclic.

(ii) If p = 2, the group G is basic if and only if kerψ is

(a) (cyclic)
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C(2i) = 〈x|x2i = e〉, i ≥ 0;

(b) (quaternionic)

Q(2i) = 〈x, y|x2i−1
= e, y2 = x2i−2

, yxy−1 = x−1〉, i ≥ 3;

(c) (semidihedral)

SD(2i) = 〈x, y|x2i−1
= y2 = e, yxy−1 = x2i−2−1〉, i ≥ 4;

(d) (dihedral)

D(2i) = 〈x, y|x2i−1
= y2 = e, yxy−1 = x−1〉, i ≥ 4; or

(e) D(8) = 〈x, y|x4 = y2 = e, yxy−1 = x−1〉 and the map

P → Out(D(8)) ∼= C(2)

induced by conjugation is onto.

The special case of (3.5) where G is a p-group is due to Roquette [22] .

Proof: Let T = kerψ.
(⇒): If G is basic, then T contains no subgroup K ∼= C(p)×C(p) such thatK �P .
Since Aut(C) is abelian, [P, P ] ⊆ ker(ψ). Thus (3.1) implies [P, P ] is contained in
a maximal normal cyclic subgroup A of T . Then A is self–centralizing in T . Apply
(3.A.2). Notice that if T ∼= D(8) and P → Out(D(8)), is not onto, then T contains
a subgroup isomorphic to C(2)× C(2) which is normal in P .
(⇐): If G is not basic, then (2.7) implies G contains a normal subgroup isomorphic
to C(p) × C(p). This implies T contains a subgroup K ∼= C(p) × C(p) which is
normal in P . It is easily verified that this is impossible for each of the groups listed
in (3.A.6). 2

(3.A.7) Theorem: If a 2–hyperelementary group G is an index 2 subgroup of a
basic group then kerψ is C(2i), i ≥ 0;Q(2i), i ≥ 3;D(2i), i ≥ 3; and SD(2i), i ≥ 4.
In particular, any such group is an F–group.
Remark: Note that the only non–basic groups on this list are a few cases in which
kerψ ∼= D(8).

Proof: If G is an index 2 subgroup of a 2–hyperelementary group, G̃, then either
kerψ = ker ψ̃, or else kerψ has index 2 in ker ψ̃. The only case requiring comment
is the kerψ index 2 in ker ψ̃ case. It is easy to list the index two subgroups of
the cyclic, quaternionic, dihedral and semidihedral groups and to see that the only
trouble could come from an index 2 subgroup of a group G̃ of type (e) above. But as
G is normal in G̃, kerψ ⊂ D(8) must be invariant under the map P → Out(D(8))
and so kerψ ∼= C(4).

The cyclic, quaternionic, dihedral and semidihedral groups each have a self–
centralizing cyclic normal subgroup, D. Let A ⊂ G be the subgroup generated by
the normal cyclic of order prime to 2, C, and a normal cyclic subgroup of order 2r,
D. It is easy to check that A is a self–centralizing cyclic. 2
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3.B. The Quadratic Case
Before beginning the classification theorem we introduce a construction we will

need.

(3.B.1) Lemma: LetG be a group with a normal subgroupK ∼= C(2)×C(2) and a
homomorphism ω:G→ {±1} such that ω is non–trivial on K. Then G = G+ ×C(2)
where G+ = kerω.

Let 〈z〉 = K ∩ G+. Then there is a homomorphism, ε:G+ → ±1 such that
α ∈ Aut(G+), the automorphism used to define the semi–direct product, is of the
form

α(h) =
{

h if ε(h) = 1
z · h if ε(h) = −1 for all h ∈ G+ .

The element z is central. The centralizer of K in G is ker ε× C(2); ker ε is normal
in G.

Proof: It is clear that G = G+ ×C(2) where the homomorphism α is given by
conjugation by an element y ∈ K with y 6= z or e. Note α(h)h−1 is in K and
in G+. Since K ∩ G+ = 〈z〉, α(h) = h or zh. Define ε:G+ → {±1} by setting
ε(h) = −1 iff α(h) = zh. Since 〈z〉 is normal, z is central so it is not hard to check
that ε is a homomorphism.

The remaining results are clear. 2

Notation: For any pair (G,ω), let G+ = ker(ω : G → {±1}) and let kerψ+ =
G+ ∩ kerψ where ψ can be any homomorphism defined on G.

Recall that (G,ω) is ω–basic provided that no non–cyclic abelian subgroup of
G+ is normal in G.

(3.B.2) Theorem [Classification of ω-basic p- hyperelementary groups]

(i) If p is odd, a p–hyperelementary group is ω–basic if and only if it is basic.

(ii) A 2–hyperelementary group (G,ω) is ω–basic if and only if either

(a) G is basic; or

(b) G is not basic, but G = G+ ×C(2)− as in (3.B.1). Furthermore G+ is
non–trivial and basic.

Proof: It is clear from the definitions that basic groups are ω–basic, so we classify
the ω–basic groups, (G,ω), that are not basic. Definition (1.B.6) and Proposition
(2.7) imply that G contains a normal subgroup K ∼= C(p) × C(p) which is not
contained in G+. This means p = 2 and ω|K is split onto, so we are done with part
(i) and in the case p = 2 we may apply Lemma 3.B.1. Write G ∼= G+ ×C(2) with a
central z ∈ G+ and automorphism α ∈ Aut(G+) with α(h) = h or zh. Furthermore,
G+ is non–empty. We are done if we can show that G+ is basic, which we do by
contradiction. Let L ⊂ G+ be a C(2) × C(2) which is normal in G+. We derive a
contradiction by using L to construct a C(2) × C(2) in G+ which is normal in G.
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From (2.6), L contains a central ( in G+ ) element, x, of order 2. If x = z, then L
is the desired subgroup. If x 6= z then 〈z, x〉 is the desired subgroup. 2

The next result is an ω–analogue of (2.11). Let ω:G→ {±1} be an orientation
character. We can also view ω as a Q–representation of G via the inclusion {±1} →
GL1(Q). For any Q– representation ρ of G, we let ρω denote ρ⊗ ω.

(3.B.3) Definition: A Q–representation ρ is ω– invariant if ρ ∼= ρω. It is ω–
irreducible if it is ω–invariant and it can not be expressed as a sum of nontrivial
ω–invariant Q–representations. We say that an ω–irreducible Q–representation is of
type (I) if it is irreducible as a Q–representation and type (II) otherwise ( in which
case ρ = φ+ φω ).

Given a subgroup H of G and ω–irreducible Q–representations η of H and ρ of
G with η|G ∼= ρ, we say that the induction is ω–imprimitive if either

(i) η and ρ both have type (I) and the induction is imprimitive

or

(ii) η = χ + χω and the induction χ|G is imprimitive ( in which case so is the
induction χω|G ).

We say a ω–invariant Q–representation ρ is ω–primitive if it is faithful and can not
be induced ω–imprimitively from a proper subgroup.

(3.B.4) Proposition: Let G be a group, ω:G → C(2) a homomorphism, and
K ⊂ G a normal C(2) × C(2) with ω|K surjective. Write G ∼= H ×C(2) with
H = kerω. Further assume that H is an F–group. If G has a faithful irreducible
Q–representation, it is unique. If there is not a faithful irreducible representation,
then G ∼= H × C(2) and G has precisely two irreducible Q–representations which
are faithful when restricted to H. These are the only irreducible Q–representations
of G which are faithful when restricted to A, a self–centralizing cyclic in H.

Proof: Note that Lemma 3.B.1 applies so that the automorphism, α, of H giving the
semi–direct product is rather special. Let z denote the element in H which is central
in G and gives the automorphism α as α(h) = h or zh for all h ∈ H. First we show
that G does not have an irreducible faithful Q–representation iff G ∼= H × C(2).
Consider ρH |G, which is faithful, and let χ be an irreducible constituent of it. By
Frobenius reciprocity χ|H has ρH as a constituent, so H ∩kerχ = {e}, and hence H
and kerχ commute. If kerχ 6= {e}, then G = H ×C(2) ( where the C(2) is kerχ ).
Conversely, if kerχ = {e}, then χ is a faithful irreducible Q–representation of G.

Next consider the uniqueness assertions. Let ψ be an irreducible Q– represent-
ation of G, and assume that ψ is faithful when restricted to A, where A is any
self–centralizing subgroup of H. Let φ be an irreducible constituent of ψ|H . Begin
with the case G ∼= H × C(2), and apply 2.3. Since the conjugation action is trivial
in this case, ψ|H = ` · φ and so φ|A is faithful. By 2.11, φ = ρH , and we are done
with the product case since ρH has exactly two extensions to H × C(2).

28



To do the other case, notice that, since A is self– centralizing, z ∈ A, and hence
A is normal in G. Let φ be an irreducible constituent of ψ|H . Because A is a
normal cyclic group, all the conjugates of φ have the same kernel when restricted
to A, and so φ must be faithful when restricted to A. Theorem 2.11 implies that
φ = ρH . A similar argument applies to any conjugate of φ so from 2.3 it follows
that ψ|H = ` · ρH . We are done if we can show that ρH |G is irreducible or is twice
an irreducible.

Let χ denote an irreducible constituent of ρH |G. If ρH |G is Q–irreducible, then
χ = χω. If ρH |G is reducible then ρH |G is χ+ χω, and we are done if we can show
that χ = χω. If kerχ 6= {e} we saw above that G ∼= H × C(2) and G could not
have a faithful irreducible representation. Hence we can assume that χ is faithful.

Let B be the kernel of the action map G→ Aut(A). Note A ⊂ B with cokernel
at most a C(2), so B is abelian. If B is cyclic, then B is self–centralizing and G is
an F–group. By 2.11, χ = χω since both are faithful irreducible Q–representations
of G.

If B is not cyclic, there is a K ∼= C(2) × C(2) in B which is normal in G.
Since kerχ = {e}, K can not be central in G, so let G0 denote the centralizer
of K in G. Note that G0 = H0 × C(2), and observe that A ⊂ H0, so H0 is an
F–group with faithful irreducible representation ρH0 . Let ψ be an extension of this
representation to G0. The argument in the product case shows that the only two
irreducible representations of G0 which are faithful on A0 are ψ and ψω.

Now apply 2.8. Since χ is faithful, χ|G0 = φ+φx, where x ∈ G−G0; φx denotes
the conjugation of φ by x; and φ 6= φx. Both φ and φx must be faithful on A, since
their sum is. Hence φ is one of ψ or ψω and φx is the other. So φx = φω. 2

(3.B.5) Definition: Each ω–basic group has an ω– irreducible Q–representation,
called the ω–basic representation , and written ρG. It is the unique faithful ω–
irreducible Q–representation of G. It is of type (II) iff G = kerω × C(2)−.
Remark: The necessary existence and uniqueness results have already been verified.
If G is basic the needed result follows from 2.10 and 2.11. For the groups in 3.A.6
(ii)(b), Proposition 3.B.4 applies by 2.10.

(3.B.6) Remark: There is no danger in writing ρG, since if G is an ω–basic
F–group the ρG defined in 2.11 is clearly also the ω–basic representation.

(3.B.7) Remark: We leave it to the reader to show that ρG is ω–primitive.
The following result implies the analogue of (2.13), namely that ω–irreducible

representations can be induced up nicely from ω–basic subquotients.

(3.B.8) Theorem: Let G be a p–hyperelementary group equipped with an orien-
tation character ω:G → {±1}. Let ρ be ω–irreducible. Then there are subgroups
N � H of G with N ⊂ kerω such that H/N is ω–basic and ρ is ω– imprimitively
induced from ρ

H/N
. The index of H in G is a pth power.

Proof: We induct by assuming the result for all proper subquotients of G.
Since ρ is ω–invariant, ker ρ ⊂ kerω. If ker ρ 6= {e}, ρ can be pulled–back from
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an ω–irreducible Q–representation of G/(ker ρ), so by our inductive hypothesis we
are done.

The case where ker ρ = {e} proceeds as follows. If G is ω–basic, then ρ = ρG by
3.B.4 and we are done again. If G is not ω–basic, then select a K in G+ which is
normal in G. Let χ be an irreducible Q–constituent of ρ. Since ρ is faithful and K is
in G+, it follows easily from 2.8 that K can not be central. Theorem 2.8 (ii) further
implies that χ|

G0
= ψ+ψx, where x ∈ G−G0, G0 is the centralizer of K in G, and

ψ 6= ψx, indeed K ∩ kerψ 6= K ∩ kerψx. Since K is in G+, K ∩ kerψ = K ∩ kerψω,
so ψx 6= ψω. If χ = ρ, the type (I) case, then ρ = ρω, so ψω = ψ and we can ω–
imprimitively induce ρ from G0. If ρ 6= χ, the type (II) case, then ψω 6= ψ so again
we can ω– imprimitively induce ρ from G0. 2

3.C. The Witt Case:
Recall, (1.C.4), that a Witt–basic group is a 2– hyperelementary group in which

all abelian normal subgroups that are θ–invariant are cyclic. In particular, a 2–
hyperelementary group with geometric antistructure is Witt–basic iff it has no
normal θ–invariant C(2) × C(2)’s in kerω. Hence the next result classifies the
Witt–basic 2– hyperelementary groups.

(3.C.1) Theorem [Classification of Witt–basic 2–hyperelementary groups]
Let (G, θ, ω, b) be a 2–hyperelementary group with geometric antistructure.

(i) There are no normal θ–invariant C(2)× C(2)’s in G iff either

(a) G is basic, or

(b) G is not basic, but kerψ ∼= D(8), and θ acts on D(8) as a non–trivial
outer automorphism.

(ii) There are normal θ–invariant C(2)×C(2) in G but none of them are contained
in ker(ω) iff G = G+ ×C(2)− as in (3.B.1) and G+ has no normal θ–invariant
C(2)× C(2)’s.

Proof: Define a new group G̃ = 〈G, x|xgx−1 = θ(g) for g ∈ G, x2 = b−1〉. Note
G ⊂ G̃ is of index 2. Let ω̃: G̃→ {±1} be the homomorphism with ker ω̃ = G.

We begin by producing the G which do not have a θ–invariant normal C(2) ×
C(2). Clearly these are the groups G for which (G̃, ω̃) is ω̃–basic. By the classifi-
cation of ω–basics, G is an index 2 subgroup of a 2–hyperelementary basic group,
which are listed in 3.A.7. Hence G is basic, or kerψ ∼= D(8). If kerψ ∼= D(8)
then G still has no θ–invariant normal C(2)× C(2)’s if G is basic, or if θ acts as a
non–trivial outer automorphism on D(8). These are the groups satisfying (i) above.

Now suppose that there are θ–invariant C(2) × C(2)’s in G, none of which are
in G+. Pick a θ–invariant C(2) × C(2) and apply Lemma 3.B.1. Note that the
corresponding z satisfies θ(z) = z. We need to see why G+ has no θ–invariant
C(2)×C(2)’s. We proceed by contradiction, so suppose that E is a C(2)×C(2), θ–
invariant and normal in G+. By 2.6 there are central ( in G+ ) elements of order 2
in E. We can easily find a central x ∈ E with θ(x) = x. If x = z we are done. If not,
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the group 〈x, z〉 is a central θ–invariant C(2)×C(2) in G+ which is normal in G, so
we are done in either case. To do the converse, return for a moment to the groups
with no θ–invariant normal C(2)×C(2)’s. From the classification of basics (3.A.6)
we see that these groups have a unique element z of order 2 in their centers, which
must then satisfy θ(z) = z. Hence if G = G+ ×C(2)− with the automorphism α
built as in (3.1) with G+ having no θ–invariant normal C(2)×C(2)’s, then there is
a θ–invariant normal C(2)× C(2) in G. 2

(3.C.2) Definition: A Q–representation ρ is a group homomorphism G:→
GL(Vρ), so we can define ρθ by precomposing this homomorphism with θ. De-
fine ρα = (ρθ)ω. A Q–representation is called α– invariant provided ρα = ρ.

(3.C.3) Theorem: Each Witt–basic group has an irreducible Q– representation
which is faithful and which is α–invariant. This representation is unique unless
G = G+ × C(2)− in which case there are precisely two.

Remark: We write ρG for the representation when it is unique, and call it the
Witt–basic representation . We write ρ+

G
and ρ−

G
for the two representations when

there are two. We call them the Witt–basic representations. Note (ρ+
G
)ω = ρ−

G
and

vice-versa.

Proof: If G is an index 2 subgroup of a basic group, then it is an F–group by 3.A.7.
Hence Witt–basic groups satisfying 3.C.1 (i) have a unique faithful by 2.11. For
case (ii), note Proposition 3.B.4 applies. 2

(3.C.4) Theorem: Let ρ be an irreducible Q–representation of a 2– hyper-
elementary group G, with a geometric antistructure (θ, ω, b). Suppose that ρ is
α–invariant. Then, there exist subgroups Nρ � Hρ of G with Nρ ⊂ kerω, and an
element cρ ∈ G such that Hρ and Nρ are θ

cρ
– invariant. The scale by cρ of the

given antistructure on G restricts to an antistructure on Hρ/Nρ and a twisted induc-
tion and a twisted restriction are defined. Furthermore, Hρ/Nρ with its geometric
antistructure is a Witt–basic group.

If ρ = ρω then Hρ/Nρ has a unique Witt–basic representation which induces up
imprimitively to give ρ.

If ρ 6= ρω, then Hρ/Nρ has two Witt–basic representations. One of then induces
up imprimitively to give ρ and the other induces up imprimitively to give ρω.

Proof: We say that an induction from χ on H to ρ on G is Witt–imprimitive iff
ρα = ρ, there is a c ∈ G such that the geometric antistructure on G, when twisted
by c, restricts to a geometric antistructure on H, and χα = χ.

As usual we can assume the result for proper subquotients of G. Fix an α–
invariant irreducible Q–representation ρ of G.

First we do the case in which ρω = ρ. If ker ρ 6= {e}, it is easy to see that
ker ρ is a θ–invariant subgroup of G+, and so we can pull ρ back from the quotient
G/(ker ρ), which has a geometric antistructure so that the map G→ G/(ker ρ) is a
map of groups with geometric antistructure. Suppose ker ρ = {e}, and that G is not
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Witt–basic. Then by 2.8 we can induce ρ imprimitively from an index 2 subgroup,
the centralizer, G0 of some K ∼= C(2)×C(2). Since K is θ–invariant, b ∈ G0 and G0

is θ–invariant. Let ψ be one of the two irreducible Q–representations of G0 which
induce up to give ρ. If ψα = ψ then an ordinary induction is Witt– imprimitive.
If ψα 6= ψ then ψα = ψx for some x ∈ G. If we scale by x we now get a Witt–
imprimitive induction. Notice that K is θx–invariant, so b(x) ∈ G0. Since K is in
G+, ψω and ψ have the same kernels when restricted to K. Since ρω = ρ, it is not
hard to check that ψω = ψ.

Now we do the case ρω 6= ρ. Let χ = ρ + ρω. Suppose that the θ–invariant
K in G+ were central. Then K ∩ ker ρ 6= {e} by 2.8, and K ∩ ker ρ = K ∩ ker ρω

since K ⊂ G+. Hence χ has a kernel. If we assume that kerχ 6= {e}, then this
subgroup is a normal, θ–invariant subgroup of G+ so we can pass to a quotient as
above. Hence, we may as well assume that kerχ = {e} and that K is not central
in G. Let G0 be the centralizer of K in G. Just as in the last paragraph, we can
induce ρ Witt– imprimitively from a representation ψ on G0. It follows that ρω is
induced from ψω using exactly the same twist. 2

4. The Detection and Generation Theorems.
We review the usual idempotent decomposition of QG. The simple factors of

QG are in one to one correspondence with the irreducible rational representations
of G, and the central simple idempotent associated to a ρ ∈ IrrQ(G) is given by
the formula

eρ =
aρ
|G|

∑
g∈G

tr(ρ(g−1)) · g

where aρ is the complex dimension of an irreducible constituent of the complexifi-
cation of ρ, and tr(ρ(g−1)) is just the character of ρ applied to g−1. ( see Yamada,
[33] , page 4, Prop. 1.1 ).

Notice that, if |G| ∈ R×, then eρ ∈ RG, and

RG = ⊕ρ∈IrrQ(G)eρRG.

In R−Morita we also get a decomposition. Let [ eρ] represent the RG−RG
bimodule eρRG in R−Morita, so

[ eρ] ∈ HomR−Morita(RG,RG).

We have the usual idempotent equations:

(i) [ eρ] · [ eψ] =
{

0 if ρ 6∼= ψ
[ eρ] if ρ = ψ

(ii) 1RG =
∑

ρ∈IrrQ(G)

[ eρ].

There are two standard maps in R−Morita: the diagonal map ∆:A→ ⊕A and
the fold, or sum map Σ:⊕A→ A.

We can rephrase (ii) as
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(iii) The following diagram commutes:

RG
∆−→ ⊕RG

1RG ‖ ↓ ⊕[ eρ]

RG
Σ←− ⊕RG

A. The Linear Case:
The first goal is to prove that the maps [ eρ] which are defined to be in R−Mor-

ita have natural lifts to RG−Morita, Theorem 4.A.5. After some initial technical
discussion, we prove a key commutativity result, Proposition 4.A.4. The promised
strong form of the Linear Detection and Generation Theorems then follow fairly
easily.

(4.A.1) Lemma: If |G| ∈ R×, then the R–group ring functor RG−Morita
→ R−Morita is injective.

Proof: Injective means that HomRG−Morita(H1,H2)→ HomR−Morita(RH1, RH2)
is injective. By Bass [1 , Prop. 1.3, p. 346], RX and RX ′ are equal inHomR−Morita

(RH1, RH2) iff there is an RH2−RH1 bimodule, C, which is projective as an RH2–
module, such that RX ⊕ C ∼= RX ′ ⊕ C as RH2−RH1 bimodules.

Since R[H2] ⊗ R[H1]op is a free bimodule we can find a bimodule surjection
f : (R[H2]⊗ R[H1]op)n → C for some finite n. Since |H1| · |H2| is a unit in R, C is
projective as a bimodule since it is projective as an R module and we can average
any R module splitting of f to a bimodule splitting. Hence we can assume that the
C above is free. But the free bimodule is just our functor applied to the H2−H1

biset H2 ⊕H1, and so X and X ′ were already equivalent in RG−Morita. 2

We introduce some terminology to enable us to deal efficiently with all our
various notions of irreducibility.

(4.A.2) Definition: A Q–representation, ρ of a finite group G is called unital if,
whenever we write ρ =

∑
ψi, ψi 6∼= ψj unless i = j. A collection of unital Q–

representations, {ρi} is called complete iff every irreducible Q– representation of G
occurs in exactly one of the ρi.

(4.A.3) Extensions of notation and terminology: If ρ =
∑
ψi is unital,

then define eρ =
∑
eψ

i
∈ RG; [ eρ] =

∑
[ eψ

i
] and a representing bimodule is

⊕eψ
i
RG = eρRG ⊂ RG. We say that ρ is imprimitively induced from χ on H ⊂ G,

provided χ =
∑
φi and each ψi is induced imprimitively from φi. ( Note that

χ|G = ρ ). Extend the notion of imprimitive induction to subquotients as we did in
the irreducible case.

Notice that an ω–irreducible representation is unital, and an ω–imprimitive in-
duction is imprimitive.

The proofs of the next two lemmas have the same form. We leave it to the reader
to check that the defined map really is a bimodule map as claimed. Moreover, since
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⊗Z[ 1
m ]R preserves isomorphisms, it suffices to prove the result for R = Z[ 1

m ] where
m = |G|. First we show that the defined map is onto; then we show that the domain
of the map is torsion–free; and then we show that the two ranks are the same.

(4.A.4) Lemma: Let N �H be groups, and let ρ be a unital Q– representation
of H that is pulled back from a Q–representation ρ̄ on H/N . Then the map of
R[H/N ]−R[H/N ] bimodules

f :R[H/N ]⊗RH eρRH ⊗RH R[H/N ] −→ eρ̄R[H/N ]

defined by f(h̄1 ⊗ eρh2 ⊗ h̄3) = h̄1eρ̄π(h2)h̄3 for all h̄1, h̄3 ∈ H/N and all h2 ∈ H
( π denotes the projection π:H → H/N ) is an isomorphism whenever |H| ∈ R×.

Proof: Clearly the map is onto. Since eρRH is a summand of RH as an RH−RH
bimodule, the domain of our map is a summand of R[H/N ]⊗RHRH⊗RHR[H/N ] ∼=
R[H/N ] and so is torsion–free.

Define σ:R[H/N ]→ RH by

σ(h̄) =
1
|N |

∑
h

where the sum runs over the elements inH in the coset of h̄. The map σ is a ring map
which splits the projection and which takes eρRH isomorphically onto eρ̄R[H/N ].
But it is easy to see that the map eρRH → R[H/N ]⊗RH eρRH⊗RHR[H/N ] which
take eρ ·h to 1⊗ eρ ·h⊗ 1 induces a surjection so R[H/N ]⊗RH eρRH ⊗RH R[H/N ]
and eρ̄R[H/N ] have the same rank. 2

(4.A.5) Lemma: Let H be a normal subgroup of G and let ρ be a unital Q–
representation of G which is induced imprimitively from η on H. Then the natural
RG−RG bimodule map

ı̂:RG⊗RH eηRH ⊗RH RG −→ eρRG

defined by ı̂(g1⊗ eηh⊗ g2) = eρ · g1 · eηh · g2 is an isomorphism whenever |H| ∈ R×.

Proof: From 2.3 we have the idempotent equation

eρ =
r∑
j=0

e
η
xj

where {xj ∈ G} are a set of coset representatives for G/H and r = |G/H|. Note
e
η
xj

= xjeηx
−1
j , so

r∑
j=0

ı̂(xj ⊗ eη ⊗ x−1
j g) = eρ · g

for all g ∈ G, and our map is onto.
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Next note RG ∼= ⊕xiRH ∼= ⊕RHxj , so
RG⊗RH eηRH ⊗RH RG ∼= ⊕i,jxiRH ⊗RH eηRH ⊗RH RHxj

as R modules
∼= ⊕i,jxi ⊗ eηRH ⊗ xj .

This shows that RG ⊗RH eηRH ⊗RH RG is torsion–free, and that its rank is
r2 · rankReηRH. Imprimitive induction implies rankReρRG = r2 · rankReηRH. 2

(4.A.6) Proposition: Let N �H with H ⊂ G where G is p– hyperelementary:
suppose that ρ is a unital Q–representation of G that is induced imprimitively
from ψ on H/N . Suppose |H| ∈ R×. Then, in R−Morita, the following diagram
commutes:

RG
[eρ]−−−−−−−−−−−−→ RG

Res
H/N
G ↓ ↑ Ind

H/N
G

R[H/N ]
[eψ]−−−−−−−−−−−−→ R[H/N ]

Proof: Begin by assuming that ρ is Q–irreducible. We can factor the restriction
and induction maps as maps from H/N to H and then from H to G. Since the
induction is imprimitive, we can further factor the inclusion H ⊂ G into a sequence
of normal inclusions by 2.14.

Hence it suffices to prove that the diagram commutes for two special cases:
namely a quotient group, G/N of G and a normal subgroup, H of G. The way that
we tell that our diagrams commute in R−Morita is to write down the bimodules
representing the two different sequences of compositions and see that the two re-
sulting bimodules are isomorphic. For the quotient group case, this is just Lemma
4.A.4 and for the normal subgroup case it is just Lemma 4.A.5.

Since the diagram commutes for irreducible ρ it is easy to extend to the case of
a sum of different irreducibles. 2

(4.A.7) Theorem: Let G be a p–hyperelementary group, and let ρ be a unital
Q–representation of it. Let |G| ∈ R×. Then there is a unique map in RG−Morita
which hits [ eρ] in R−Morita. We will denote this map in RG−Morita also by [ eρ].

Proof: Since |G| ∈ R×, theR–group ring functor embedsRG−Morita intoR−Mor-
ita by Lemma 4.A.1, so the uniqueness result is clear. To prove existence, it suffices
to do the irreducible case. We can assume that the result holds for all groups which
are proper subquotients of G. If ρ has a kernel, then from Proposition 4.A.4 it

follows that the composite RG→ R[G/N ]
[eη ]−−−−−−−−→ R[G/N ]→ RG is just [ eρ].

Since the first and last maps in the composite are naturally in RG−Morita so is
[ eρ]. A similar argument holds if ρ can be imprimitively induced from a proper
subgroup using Lemma 4.A.5.

In the case where ρ is faithful and cannot be induced imprimitively from a
proper subgroup, then G is basic and ρ = ρG by Theorem 2.13. The [ eψ] for all
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the representations of G except ρG can be assumed to be in RG−Morita, and 1RG
comes from the G−G biset G and so is in RG−Morita. Since the sum of all the
[ eψ]’s is 1RG in R−Morita we can define [ eρ] in RG−Morita so that the sum of
all the [ eψ]’s is 1G in RG−Morita. 2

(4.A.8) Linear Detection and Generation Theorem: Let G be a p–hyper-
elementary group, and assume that |G| is a unit in R. Suppose given a complete set
of unital representations of G, say {ρi}. Suppose further that we are given subquo-
tients {Hi/Ni} with Q–representations ψi and suppose that each ρi is imprimitively
induced from ψi. Then, in RG−Morita, the following composite is the identity.

RG
Res−−−→ ⊕R[Hi/Ni]

×[ eψi ]−−−−−−−−−→ ⊕R[Hi/Ni]
Ind−−−→ RG.

Proof: The result follows easily in R−Morita from the idempotent equation ( equa-
tion (iii) in the introduction to section 4 ) and Proposition 4.A.6. It then holds in
RG−Morita by Lemma 4.A.1 and Theorem 4.A.7. 2

(4.A.9) Proof of Theorem 1.A.11:
By 2.13, for each irreducible Q–representation ρ we can find subquotients Hρ/Nρ

which are basic groups and so that ρ is induced imprimitively from the basic rep-
resentation. Apply 4.A.8 to this collection. 2

The last result in this section translates some of the idempotent results from
above into RG−Morita.

(4.A.10) Theorem: Proposition 4.A.6 holds in RG−Morita. Moreover, suppose
given subgroups N �H of G; ρ ∈ IrrQ(G) and a unital representation η on H/N .
The composition

RG
[ eρ]−−−→ RG

Res−−−→ R[H/N ]
[ eη ]−−−→ R[H/N ]

is trivial in RG−Morita if ρ is not a constituent of IndGH/N (η).

Proof: The maps in Proposition 4.A.6 are in RG−Morita by 4.A.7 and the diagram
commutes in RG−Morita by 4.A.1 and 4.A.6.

For the last result we may assume that η is irreducible and that we are working
in R−Morita. Let φ on H be the pull–back of the representation η. A representing
bimodule for our map is eηR[H/N ]⊗RH eρRG. By 4.A.4, eφRH⊗RH eρRG surjects
onto it, so we prove eφRH ⊗RH eρRG = 0.

It follows from the construction of the idempotent decompositions that the com-
posite eφRH ⊂ RH ⊂ RG→ eρRG is the 0–map under our hypotheses, so, in the
ring RG, eφ · eρ = 0. But eφRH ⊗RH eρRG is an RH−RG bimodule summand of
RH ⊗RH eρRG = eρRG and the image is generated by eφ ⊗ eρ = eφ ⊗ eφ · eρ = 0.
2

B. The Quadratic Case:
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The goals and strategy are the same as for the linear case.

(4.B.1) Lemma: If |G| ∈ R×, then the R–group ring functor (RG,ω)−Morita
→ (R,−)−Morita is injective. If in addition 2 is a unit in R, then the R–group
ring functor (RG, θ, ω, b)−Morita→ (R,−)−Morita is injective.

Proof: As in the linear case, it is no trouble to prove that if (RX,λX) is equivalent
to (RY, λY ) in (R,−)−Morita, then there is a metabolic form on a free bimodule,
say (C, λ), so that (RX,λX) ⊥ (C, λ) is isomorphic to (RY, λY ) ⊥ (C, λ). The
problem is that the metabolic form on the free bimodule may not come from a biset
form.

One biset form on the rank 1 free H2−H1 biset, X = H2 ×H1 is defined by

θX(k, h) = (θH2
(k)b−1

H2
, bH1

θH1
(h)) and ωX(k, h) = ωH2

(k) · ωH1
(h).

The only other one just takes ω to be minus the ω above. The orthogonal sum
of these two forms is a metabolic form, denoted Meta(λfree) We can define an-
other biset form on X⊥⊥X as follows: θX⊥⊥X(x1, x2) = (θX(x2), θX(x1)) and
ωX⊥⊥X(x1, x2) = ωX(x1) · ωX(x2), where θX and ωX are the ones constructed
above. In the associated form on RX ⊕ RX, each copy of RX is a Lagrangian, so
this form is hyperbolic.

If |G| is odd, and the antistructures are standard, use 1.B.1 to compute that
Ĥ0(Z/2Z;HomR(RH1, RH2)) ∼= Z/2Z and that [λfree] is the generator. It follows
easily from the formulae (i), (ii) and (iii)below 1.B.1 that any metabolic on a free
bimodule is equivalent to one coming from a free biset form.

If 2 is a unit in R, then all metabolics are hyperbolic and we are done again. 2

(4.B.2) Definition: We can associate to each group G with oriented geometric
antistructure the biset form on G which is the identity in our category. The asso-
ciated form is defined by

λ(g1, g2) = ω(g2) · g1 · θ−1(g2).

We can restrict this form to any of the eρRG. If ρ is α–invariant, then we get
a nonsingular bihermitian form on eρRG. If ρ 6= ρα then we get a nonsingular
bihermitian form on e

ρ+ραRH which is easily seen be hyperbolic.
The proofs of the next two lemmas consist of verifying that an explicit map

preserves an explicit form. They are omitted.

(4.B.3) Lemma: Let N �H be groups, and let ρ be a unital α–irreducible Q–
representation ofH that is pulled back from a Q–representation ρ̄ onH/N . Suppose
that N ⊂ kerω and that N is θ–invariant. Then the map of R[H/N ]−R[H/N ]
bimodules f defined in Lemma 4.A.4 is an isometry whenever |H| ∈ R×.

(4.B.4) Lemma: Let H be a θ–invariant, normal subgroup of G with b ∈ H, G
p–hyperelementary and let ρ be a unital α–invariant Q–representation of G which
is induced imprimitively from η on H with η α–invariant. The RG−RG bimodule
map ı̂ defined in Lemma 4.A.5 is an isometry whenever |H| ∈ R×.
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(4.B.5) Proposition: Let N �H with H ⊂ G where G is p– hyperelementary.
Let (θ, ω, b) be a geometric antistructure and suppose that H and N are θ–invariant
and N ⊂ kerω. Suppose that ρ is an α–invariant unital Q–representation of G that
is induced imprimitively from ψ on H/N . Suppose b ∈ H, so there is an induced
geometric antistructure on H/N and suppose that ψ is α–invariant. Suppose |H| ∈
R×. Then, in (R,−)−Morita, the following diagram commutes:

RG
[eρ]−−−−−−−−−−−−→ RG

Res
H/N
G ↓ ↑ Ind

H/N
G

R[H/N ]
[eψ]−−−−−−−−−−−−→ R[H/N ]

Proof: The proof is much the same as in the linear case ( Proposition 4.A.6 ).
Of course we use Lemmas 4.B.3 and 4.B.4 instead of their linear versions. By
Proposition 2.14 we can find a sequence of subgroups between H and G, each
normal in the next, but we need to have them θ–invariant as well. If H1 is θ–
invariant and normal in H2, then consider the group generated by H2 and θ(H2).
This group is certainly θ–invariant, and H1 is still normal in it. Finish as in the
linear case. 2

(4.B.6) Theorem: Let G be a p–hyperelementary group with a geometric
antistructure, for which θ is the identity. Let ρ be an ω–invariant unital Q–
representation of it. Let |G| ∈ R×. In (RG,ω)−Morita there is a unique map
which hits [ eρ] in (R,−)−Morita. We will denote this map in (RG,ω)−Morita
also by [ eρ].

Proof: By Lemma 4.B.1, the R–group ring functor is an embedding, so the unique-
ness result is clear. As in the linear case ( Theorem 4.A.7 ) we can reduce to the
case in which ρ is ω–irreducible. We can further assume that the result holds for
all groups which are proper subquotients of G. If ρ has a kernel, or can be induced
imprimitively from a proper subgroup, use Proposition 4.B.5 and finish as in the
linear case.

In the case where ρ is faithful and cannot be induced imprimitively from a proper
subgroup, then G is ω–basic and ρ = ρG by Definition 3.B.5. The [ eψ] for all the
representations of G except ρG can be assumed to be in (RG,ω)−Morita, and 1RG
comes from the G−G biset form G and so is in (RG,ω)−Morita. Since the sum of
all the [ eψ]’s is 1RG in (R,−)−Morita we can define [ eρ] in (RG,ω)−Morita so
that the sum of all the [ eψ]’s is 1G in (RG,ω)−Morita. 2

(4.B.7) Quadratic Detection and Generation Theorem: Let G be a p–
hyperelementary group, and assume that |G| is a unit in R. Suppose given a ge-
ometric antistructure in which θ is the identity. Let {ρi} be a complete collection
of ω–invariant unital Q–representations. Let {Ni �Hi} be a collection of subquo-

38



tients of G with Ni ⊂ kerω for all i. Assume that ρi is induced imprimitively from
an ω–invariant unital representation ψi. Then, in (RG,ω)−Morita, the following
composite is the identity.

RG
Res−−−→ ⊕R[Hi/Ni]

⊕[ eψi ]−−−−−−→ ⊕R[Hi/Ni]
Ind−−−→ RG.

Proof: The corresponding result in (R,−)−Morita follows easily from the idem-
potent equation ( equation (iii) in the introduction to section 4 ) and Proposition
4.B.5. By Theorem 4.B.6 and Lemma 4.B.1 the result also holds in (RG, θ, ω, b)−
Morita. 2

(4.B.8) Proof of Theorem 1.B.7: By Theorem (3.B.8) each ω–irreducible Q–
representation can be induced from the ω–basic Q–representation on an ω–basic
subquotient by an imprimitive induction. Apply Theorem 4.B.7. 2

C. The Witt Case:
Our first goal is the proof of the Detection/Generation theorem, 1.C.5, but we

begin with some definitions and lemmas.

(4.C.1) Definition: We call a ring with antistructure, (A,α, u), hyperbolic pro-
vided A = A1 ×A2 as rings, and α(A1 × 0) = 0×A2.

(4.C.2) Lemma: If (A,α, u) is a hyperbolic ring with antistructure and (B, β, v)
is any ring with antistructure, then any B−A or A−B nonsingular, bihermitian
biform is hyperbolic.

Proof: Let λ:M ×BM t −→ A be an A−B nonsingular, bihermitian biform. Define
M1 = (1, 0)M and M2 = (1, 0)M . Note M = M1 ⊕M2 since M1 ∩M2 = {0}. This
is because (1, 0) acts as the identity on M1, and as 0 on M2.

Next note that λ|M1
is trivial. Indeed, λ(m1, m̄1) = λ((1, 0) ·m1, (1, 0) · m̄1) =

λ((1, 0) · m1, m̄1 • (1, 0)) = (1, 0)λ(m1, m̄1)(1, 0) = 0. A similar argument shows
that λ|M2

is trivial.
Contemplation of the isomorphism ad(λ) shows that λ is hyperbolic with respect

to M1 and M2.
A similar argument works for the B−A case. 2

(4.C.3) Lemma: Let G be a 2–hyperelementary group with oriented geometric
antistructure (θ, ω, b, ε). Suppose that |G| ∈ R×. Let ψ be a unitalQ–representation
of G such that ψα = ψ. Assume that every irreducible Q–representation ρ of G
which satisfies ρα = ρ is a constituent of ψ. Then, in (R,−)−Witt,

1(RG,θ,ω,b,ε) = [ eψ]

Proof: Given the hypotheses, it is easy to find a unital representation χ, such that
ψ + χ + χα is unital and contains every irreducible Q–representation of G. Then
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RG = eψRG × eχRG × eχαRG. The ring eχRG × eχαRG is hyperbolic in the
induced antistructure, so the result follows from Lemma 4.C.2. 2

We have our usual theorem.

(4.C.4) Theorem: Let G be a 2–hyperelementary group with oriented geometric
antistructure (θ, ω, b, ε). Suppose that |G| ∈ R×. Let ψi be a collection of unital Q–
representations of G such that ψαi = ψi. Suppose there are subgroups Ni�Hi of G
with Q–representations φi such that ψi is induced imprimitively from φi. Suppose
that Ni ⊂ kerω. Suppose that for each i there is a ci ∈ G such that Hi and Ni are
θci = θi–invariant and φi is αi–invariant. Suppose bi = b(ci) ∈ Hi Finally, suppose
that each irreducible Q–representation ρ of G which is α–invariant occurs in exactly
one ψi.
Then, in (R,−)−Witt, the following composite is the identity.

(RG, θ, ω, b, ε) Res−−−→ ×(R[Hi/Ni], θi, ω, bi, εi)
×[eφ

i
]

−−−−→ ×(R[Hi/Ni], θi, ω, bi, εi)

Ind−−−→ (RG, θ, ω, b, ε)

where a subscript of i indicates that we have changed the antistructure by scaling
by ci before restricting to the subquotient.

Proof: The proof by now should be clear. 2

(4.C.5) Proof of 1.C.5: The proof of 1.C.5 follows from 3.C.4 and 4.C.4. 2

We conclude this section with a proof of 1.C.3, as well as a remark about 4.C.4.
Notice that both the ω–basics and the Witt– basics come in three types:
(i) basic groups (ii) basic groups ×C(2)− (iii) the rest.

Any type (iii) group, G, has a unique faithful Q–representation, ρG, which can
be induced imprimitively from a representation χ on an index 2 subgroup of the
form H×C(2)−, where H is an index 2 subgroup of a basic group. The reason that
G is still on our list is that χα 6= χ. There is an element c ∈ G however, so that if
we scale by c, χ is αc–invariant.

To prove 1.C.3, we first apply the (RG,ω)−Morita theorem, 1.B.7, and then use
the above observation to eliminate type (iii) groups at the expense of introducing
twisted maps.

Notice in 4.C.4 we could also eliminate the type (iii) groups. A further simplifica-
tion occurs in (R,−)−Witt. Notice that some of the type (ii) groups are hyperbolic
and hence can also be eliminated. This occurs whenever the θ associated to the
group acts trivially on the central C(2)× C(2).

5. Some split exact sequences in Morita categories.
In this section we want to prove that the 5–term sequences in 1.A.16 are split

exact. We will do this by showing that they are contractible. Given a sequence in
an additive category

0→ A
α−→ B

β−→ C → 0
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it is a 0–sequence if β◦α = 0. It is contractible provided there exist maps f :C → B
and g:B → A such that
(5.0) (i) g◦f = 0 (ii) β◦f = 1C (iii) g◦α = 1A (iv) α◦g + f◦β = 1B
It is an easy exercise to check that contractible implies split exact (and even vice-
versa).

A. The Linear Case.
We are going to prove Theorem 1.A.16. The proof divides into two cases de-

pending on whether the K is central or not. We begin with the central case.
In our 5–term sequence for this case, A = RG, B = ⊕pi=0 R[G/Ci] and C =

(R[G/K])p. The map α:RG→ ⊕pi=0 R[G/Ci] is just the product of the individual
projections G→ G/Ci. We define the map β.

(5.A.1) Definition: Define β:⊕pi=0 R[G/Ci] → (R[G/K])p as follows: for 1 ≤
i ≤ p, β|R[G/C

i
] is just the projection; to define β|R[G/C0 ] we define its negative to

be the composite R[G/C0] → R[G/K] → (R[G/K])p, where the first map is the
projection and the second map is the diagonal.

Notice that β is defined in ZG−Morita and that β◦α = 0 even in ZG−Morita.
Next we define f : (R[G/K])p → ⊕pi=0 R[G/Ci] by describing its projection to

each factor R[G/Ci]. The projection to R[G/C0] is the 0–map, and for 1 ≤ i ≤ p the
projection to R[G/Ci] is the composite (R[G/K])p → R[G/K] → R[G/Ci] where
the first map is projection onto the ith factor and the second map is generalized
induction associated to the projection. ( Note that this map is only defined if p is
a unit in R. )

The definition of g:⊕pi=0R[G/Ci]→ RG is next. We define it as the sum of maps
gi:R[G/Ci] → RG: g0 is the generalized induction map; for 1 ≤ i ≤ p, gi is the
composite R[G/Ci]

e−→ R[G/Ci] → RG where the second map is the generalized
induction associated to the projection and where e is 1R[G/C

i
] minus the composite

R[G/Ci]→ R[G/K]→ R[G/Ci] of the projection and the corresponding generalized
induction. Notice all the gi are defined whenever p is a unit in R, and equation 5.0
(i) holds.

(5.A.2) Lemma: Let G be a finite group and N a normal subgroup. Then the
following diagram commutes in RG−Morita whenever |N | ∈ R×.

R[G/N ]
1R[G/N]−−−−−−−−→ R[G/N ]

Proj↓ ↑Ind
RG

1RG−−−−−−−−→ RG

Proof: The proof is sufficiently similar to the proof of Lemma 4.A.4 that it is
omitted. 2

Using the definitions of the maps and the lemma, it is easy to check that (5.0)
(ii) and (iv) hold whenever p is a unit in R.

Finally, we assume that |G| is a unit in R. It is not hard to check that g◦α = 1A
using 2.8 (i) and 4.A.6.

We turn now to the case in which K is not central in G. Our 5–term sequence
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for this case has A = R[G], B = R[G/C0]⊕R[G0/C1] and C = R[G0/K]. The map
α:A → B is the sum of the projection map RG → R[G/C0] and the generalized
restriction RG→ R[G0/C1]. We define β.

(5.A.3) Definition: Define a map β:R[G/C0] ⊕ R[G0/C1] → R[G0/K] as the
sum of two maps: R[G0/C0]→ R[G0/K] is the projection and the map R[G/C0]→
R[G0/K] is the negative of the composite R[G/C0]

Res−→ R[G0/C0]
Proj−→ R[G0/K].

Notice that β is defined in ZG−Morita.

(5.A.4) Lemma: Let H be a subgroup of G, and let N ⊂ H be normal in G.
Then, in ZG−Morita, the following diagram commutes.

RG
Res−−−→ RH

Proj↓ ↓Proj
R[G/N ] Res−−−→ R[H/N ].

Proof: The proof consists of showing that the projection map, R[H/N ]⊕RHRG −→
R[H/N ]⊕R[H/N ] R[G/N ], is an isomorphism. It is left to the reader. 2

Using Lemma 5.A.4 it is easy to see that β◦α = 0 in ZG−Morita as we claim.
Next we define the map f :R[G0/K]→ R[G/C0]⊕R[G0/C1] as the sum of two

maps. The map from R[G0/K] → R[G0/C1] is just the projection, and the other
map is the 0–map. The map g:R[G/C0] ⊕ R[G0/C1] → RG is the sum of two
maps. The map R[G/C0]→ RG is the induction associated to the projection, and
the map R[G0/C1]→ RG is the following composite: R[G0/C1]

e−→ R[G0/C1]
q−→

R[G0]
Ind−→ RG where e is 1R[G0/C1 ] minus the composite R[G0/C1]

Proj−→ R[G0/K]
q̄−→ R[G0/C1] and where q and q̄ are the inductions associated to the obvious

projections. Notice that to define f and g it is only necessary to invert p. With
just p inverted, it is easy to check that (5.0) (i), (ii) and (iv) hold.

Finally, by inverting |G|, we can use 2.8 and Proposition 4.A.6 to check (5.0)
(iii).

B. The Quadratic Case

(5.B.1) Theorem: Let G be a 2–hyperelementary group with oriented geometric
antistructure (θ, ω, b, ε). Let K ∼= C(2)×C(2) be a θ–invariant normal subgroup of
G such that K ⊂ kerω. Let C0, C1, C2 denote the cyclic subgroups of K.

(ia) If K is central and θ acts as the identity on it, then the following sequence is
split exact in (RG, θ, ω, b)−Morita

0→ (RG, θ, ω, b, ε)
Proj−−−→ (R[G/C0], θ̄, ω̄, b̄, ε)⊕ (R[G/C1], θ̄, ω̄, b̄, ε)⊕

(R[G/C2], θ̄, ω̄, b̄, ε)
β−→ (R[G/K], θ̄, ω̄, b̄, ε)2 → 0

(ib) If K is central and θ does not act as the identity on it, let C0 denote the
subgroup fixed by θ. Then

(RG, θ, ω, b, ε)→ (R[G/C0], θ̄, ω̄, b̄, ε)
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is an equivalence in (R,−)–Witt.

(iia) If K is not central, we may assume that K ∩ Z(G) = C0. Let G0 denote the
centralizer of K in G. Assume that θ acts trivially on K Then the following
sequence is split exact in (RG, θ, ω, b)−Morita

0→ (RG, θ, ω, b, ε)
Proj⊕Res−−−−−−→ (R[G/C0], θ̄, ω̄, b̄, ε)⊕ (R[G0/C1], θ̄, ω̄, b̄, ε)

β−→ (R[G0/K], θ̄, ω̄, b̄, ε)→ 0

(iib) Assume that K is not central and that θ acts non–trivially on K. Then
C0 = K∩Z(G) is θ–invariant, and there is a c ∈ G such that conjugation by c
permutes C1 and C2. The following sequence is split exact in (R,−)−Morita

0→ (RG, θ, ω, b, ε)
Proj⊕Res−−−−−−→

(R[G/C0], θ̄, ω̄, b̄, ε)
⊕

(R[G0/C1], θ̄c, ω̄, ¯b(c), ω(c) · ε)

β−→ (R[G0/K], θ̄, ω̄, b̄, ε)→ 0

where a bar over a symbol indicates that it is the natural restriction of the corre-
sponding symbol on G to the subquotient.
The maps β are described below. As in 1.A.16, all the displayed maps are defined
in (ZG, θ, ω, b)−Morita and the sequences are 0–sequences. They just may not be
exact until |G| is inverted as Non–example 1.C.6 shows.

Proof: The proof here divides into four cases. Recall that the R group ring functor
defines a functor from RG−Morita to R−Morita, so we have the linear diagrams
in R−Morita as well. Also recall that all our groups are 2– hyperelementary.

Case (ia): In this case each Ci is θ–invariant, so each of the maps that we wrote
down in the linear case (i) is also naturally a map in (RG, θ, ω, b)−Morita, and the
proof is similar to the linear case: prove the quadratic version of Lemma (5.A.2)
whenever N is a θ–invariant subgroup in kerω and then finish exactly as we did for
the linear case.

Case (ib): This is the case that forces us to move out of (RG,ω)−Morita. It is
possible to define twisted biforms and work in a “RG−Witt” category, but it does
not seem worth the effort.

The point is that the all the representations in IrrQ(G)C1⊂K are taken to rep-
resentations in IrrQ(G)C2⊂K , so in (R,−)−Witt they can be ignored. By 2.8, the
projection map G→ G/C0 induces an isomorphism on the remaining factors.

Case (iia): Once again, all the maps we wrote down in the linear case (ii) are
naturally maps in (RG, θ, ω, b)−Morita and so the proof goes just as before.
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Case (iib): To explain the problem here note that the map RG → R[G0/C1]
is not a quadratic map because C1 is not θ–invariant. However, C1 is not normal
either, so we can find c ∈ G such that conjugation by c interchanges C1 and C2,
and hence θc leaves C1 fixed, and indeed, θc acts as the identity on K. Hence we
can apply Case (iia) to the oriented geometric antistructure (θc, ω, b(c), ε(c)) where
ε(c) = ω(c) · ε. Since

(RG, θ, ω, b, ε)
Proj→ (R[G/C0], θ̄, ω̄, b̄, ε)

Proj→ (R[G/K], θ̄, ω̄, b̄, ε)

twist ↓ twist ↓ twist ↓

(RG, θc, ω, b(c), ε(c))
Proj→ (R[G/C0], θ̄c, ω̄, b̄(c), ε(c))

Proj→ (R[G/K], θ̄c, ω̄, b̄(c), ε(c))
commutes, we easily derive the required results. 2

Section 6: On the Computation of the Restriction Map.
We want to define a partial ordering on the set of irreducible Q–representations

of a p–hyperelementary group. We say that φ < ρ if ker ρ ⊂ kerφ and one of the
following holds:

(i) degχφ < degχρ, where χ denotes an irreducible complex constituent of the
subscript, or

(ii) degχφ = degχρ and Q(χφ) is properly contained in Q(χρ).

The following result is useful for computing some generalized restriction maps.

(6.1) Theorem: Suppose that ρ ∈ IrrQ(G) is such that there is a subquotient,
S, of G, which has an η ∈ IrrQ(S) such that ρ is induced imprimitively from η.
Let φ ∈ IrrQ(G) and τ ∈ IrrQ(S) be arbitrary elements. Suppose the composite

RG
[ eφ]−−−→ RG

Res−−−→ RS
[ eτ ]−−−→ RS is non-trivial. We have the following two results.

(i) If τ = η then, φ = ρ.

(ii) If τ < η then, φ < ρ.

Proof: Begin by assuming that τ = η. There is a basic subquotient F of S so that
τ is imprimitively induced from ρF . But then F is also a subquotient of G and φ
is induced imprimitively from ρF . Part (i) now follows from 4.A.10. It also follows

from 4.A.10 that RG
[ eφ]−→ RG

Res−→ RS
[ eτ ]−→ RS is trivial unless τ |G contains φ as a

constituent.
We now assume that τ < η. Part (ii) will be shown to follow from the result

that τ |G contains φ as a constituent. To fix notation, let H ⊂ G be the subgroup
mapping onto S. Since we know the kernel of an induced representation in terms
of the kernel of the original representation, we see that ker ρ = ker η|G ⊂ ker τ |G.
But, if τ |G contains φ as a constituent, ker τ |G ⊂ kerφ, and we have the first part
of what we must prove.
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Let χτ be an irreducible constituent of τ , and similarly we have χφ, χη and χρ.
If χτ |G is reducible, then clearly φ < ρ (indeed degχρ = degχη|G = |G:H|degχη
≥ |G:H|degχτ = degχτ |G and degχτ |G > degχφ). Hence we need only consider
the case for which χτ |G = χφ. If degχτ < degχη then again φ < ρ.

Hence we may as well assume that χτ |G = χφ and degχτ = degχη. The first
equation implies that Q(χτ ) ⊇ Q(χφ). Since degχτ = degχη, we must have Q(χτ )
is properly contained in Q(χη). Since Q(χη) = Q(χρ) once again φ < ρ.

This result can be applied in several places to prove absolute detection theo-
rems. We begin by proving a general detection theorem and then discussing several
situations. First we introduce some notation.

Given two unital representations φ and ρ of G, we say φ < ρ provided each
irreducible rational constituent of φ is less than each irreducible rational constituent
of ρ.

Let F1 be a additive functor defined on (Z[ 1
m ]G,ω)−Morita into an abelian

category A. Let F2 be a functor defined on the category (ZG,ω)−Morita into A.
(F2 need not be additive.) Consider F1 to also be defined on (ZG,ω)−Morita,
and let ∂:F1 → F2 be a natural transformation. Let N � H be subgroups of G
with N ⊂ kerω, and let τ be an ω–invariant unital representation of H/N . Fix an
ω–invariant unital representation η of H/N . We say the triple (H,N, η) is ∂−good
iff

ker ∂ ⊂ F1(Z[ 1
m ][H/N ], ω)

[ eτ ]−→ F1(Z[ 1
m ][H/N ], ω)

is injective, where τ is the maximal unital representation with τ < η. (Note τ is
ω–invariant.)

(6.2) Image Detection Theorem: With notation as above, fix a p-hyper-
elementary group G, and let m = |G|. Let K denote a normal subgroup of G with
K ⊂ kerω, and let π : G → G/K be the projection. Let S be a complete (Def.
4.A.2) set of unital representations of G, each of which is ω–invariant. Suppose
there is one representation, ρK ∈ S, which contains precisely the irreducible Q–
representations of G whose kernels contain K. For every other ρ ∈ S suppose
given a subquotient Nρ � Hρ and a unital representation η = ηρ such that ρ is
imprimitively induced from η. Finally, suppose that for each ρ 6= ρK , the triple
(Hρ, Nρ, ηρ) is ∂−good.

Consider the commutative square

F1(G,ω) d1−→ F1(G/K,ω)⊕
⊕
S
F1(Hρ/Nρ, ω)

↓ ∂ ↓
F2(G,ω) d2−→ F2(G/K,ω)⊕

⊕
S
F2(Hρ/Nρ, ω)

Finally, assume
(i) π: ker(F1(G,ω)→ F2(G,ω))→ ker(F1(G/K,ω)→ F2(G/K,ω)) is onto.

Then d2|Image∂ is one to one.
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Addendum: We may replace S in the above sum by the subset S ′ where (Hρ, Nρ)
is in S ′ iff F1([ eη]) does not induce the 0–map on F1(Z[ 1

m ]Hρ/Nρ).

Proof: We may as well assume we are working in a subcategory of the category of
abelian groups. Let x ∈ ker(d2)∩Image∂, and select y ∈ F1(G) with ∂(y) = x. The
assumption on the map π between the kernels means that can select y such that it
maps to 0 in F1(G/K). We will show that this y is 0 which proves the theorem.

Let Ω be the set of ω–irreducible representations of G. We can use the Quadratic
Detection Theorem 1.B.7(i) to write

y =
⊕
φ∈Ω

yφ

where yφ = F1([ eφ])(y), and y = 0 iff each yφ = 0. The proof that y = 0 is by
contradiction. Choose a φ ∈ Ω such that yφ 6= 0 and if ψ ∈ Ω with ψ < φ, then
yψ = 0. This we can clearly do.

Let ρ ∈ S be the unique representation which has φ as a constituent, and note
ρ 6= ρK . Let Yρ be the image of y in F1(R[Hρ/Nρ], ω). From 4.A.8, F1(IndGHρ/Nρ )
(F1([ eη])(Yρ)) =

⊕
φ yφ where the sum runs over the constituents of ρ. In particular,

F1([ eη])(Yρ) 6= 0.
Hence ρ ∈ S ′ and therefore (Hρ, Nρ, η) is ∂−good. Since Yρ ∈ ker ∂, this means

F1([ eτ ])(Yρ) 6= 0. But Yρ = F1(ResGHρ/Nρ )(y) by definition, so there exists a ψ ∈ Ω

such that F1([ eτ ])(F1(ResGHρ/Nρ )(yψ)) 6= 0. Hence yψ 6= 0 and from Proposition
4.A.10 and 6.1 we see that ψ < φ. This is a contradiction. 2

We give two examples based on the two functors F1(G) ∼= Lp(ZG→ Ẑ2G,ω) ∼=
LK(Z[ 12 ]G → Q̂2G) (see [12, 1.]) and F2(G) ∼= Lp(ZG,ω) for finite 2–groups. If
ω is trivial, we take K ∼= G and let S be a set of basic subquotients, one for each
representation which is not trivial. It follows easily from [12, p.115, Example 1] that
all basic 2–groups are ∂−good for the corresponding basic representation, except
for the trivial group. Since {e} never occurs as a quotient group for the elements
in S , all the Hη/Nη’s in S are ∂−good. Since Lp(Ẑ2G) → Lp(Ẑ2[G/K]) is an
isomorphism, (i) is clearly satisfied, and the map

Lp(ZG) d2−→ Lp(Z)⊕⊕SLp(Z[Hη/Nη])

is a monomorphism.
If ω is not trivial, take K ∼= [G,G]. By [12, p.115, Example 2], all ω–basic

groups which are not basic except C(4)− are ∂−good. If C(4)− appears in a set
of ω–basic subquotients where the corresponding H is a proper subgroup of G,
we can induce the corresponding representation from a subquotient of order 16.
This group of order 16 has a C(4)− subquotient for which the faithful irreducible
Q–representation on C(4) induces up imprimitively. The only group of order 16
with this property is the group M16 of 1.C.8. It is also not hard to check that
Lp(ZG(ab), ω) is detected by C(2) × C(4)− quotients so we see that Lp(ZG,ω)
is detected by ω–basic subquotients which are not C(4)− plus one C(2) × C(4)−
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quotient for each “C(4)− quotient representation” and one subquotient M16 for
each remaining “C(4)− representation”.

Finally, we correct the proof of Theorem 5.4 of [13] , which is wrong for the
case i = 2. Here again we take K to be [G,G], and note that Theorem 4.5 and
Lemma 5.2 [13] imply that the collection S ′ above consists of dihedral subquotients,
which are ∂−good. Theorem 6.2 supplies the necessary result to reduce to a routine
diagram chase.

Section 7: Another Approach to Detection Theorems.
The idea in this section is to prove detection theorems in situations in which

the order of G is not a unit in R. Let W be a functor out of (RG,ω)−Morita into
an abelian category. In general, one wants to produce a list of 2– hyperelementary
groups, G, such that, if G is not on the list, then the sum of the generalized
restriction maps

W (RG,ω)→ ⊕W (R[H/N ], ω̄)
is injective, where the product runs over all proper subquotients of G.

In this generality it is difficult to make further progress. One way to proceed is
to assume that our functor fits into a long exact sequence

· · · → Yn+1 →Wn → Xn
ψn−→ Yn →Wn−1 → · · ·

If G is not ω–basic then we can apply W∗, X∗ and Y∗ to either the 0-sequence in
5.B.1 (ia) or the one in 5.B.1 (iia). We get a commutative diagram like that in the
next lemma with A∗,n = Wn, B∗,n = Xn and C∗,n = Yn. The vertical maps ψn in
7.1 will be sums of maps ψn:Xn → Yn above.

(7.1) Long Snake Lemma: Suppose given a commutative diagram in an abelian
category.

...
...

...
↓ ↓ ↓

A1,n
fn−−−→ A2,n

gn−−−→ A3,n

↓ ↓ ↓
0 → B1,n −−−→ B2,n −−−→ B3,n → 0

↓ ψn ↓ ψn ↓ ψn
0 → C1,n −−−→ C2,n −−−→ C3,n → 0

↓ ↓ ↓
A1,n−1

fn−1−−−→ A2,n−1
gn−1−−−→ A3,n−1

↓ ↓ ↓
...

...
...

where the vertical columns are long exact sequences, each B and each C row is
exact and each A row is a 0–sequence (for all n ∈ Z). Then there is a connecting
homomorphism δn:A3,n −→ A1,n−1 such that

· · · → A1,n
fn−→ A2,n

gn−→ A3,n
δn−→ A1,n−1

fn−1−→ A2,n−1
gn−1−→ A3,n−1 → · · ·
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is a long exact sequence.
If B3,n → C3,n is injective or B2,n → C2,n is trivial, then δn is trivial.

Proof: A diagram chase. 2

Remark: Notice that when δn+1 is trivial, we detect Wn(RG,ω) by proper
subquotients.

(7.2) Example: Take Wn(ZG,ω) = Lpn(ZG,ω), Xn(ZG,ω) = Lpn(Ẑ2G,ω) and
Yn(ZG,ω) = Lpn(ZG → Ẑ2G,ω). Let G be a 2–group. The C row is exact by
Application 1.B.8 (iv) and Theorem 5.B.1 (ia) or (iia).

J. Davis and R. J. Milgram [4 ] applied these techniques to the following exam-
ple.

(7.3) Example: Take Wn(ZG,ω) = Lhn(QG,ω), Xn(ZG,ω) = LK→h
n (QG,ω)

and Yn(ZG,ω) = LKn−1(QG,ω). Let G be a 2–group. This Wn is a functor out of
(ZG,ω)−Morita because the modules defining the maps have the required freeness
([11, Proposition 5.6]). The C row is exact by Theorem 5.B.1 (ia) or (iia) plus the
fact that the round L–theory is a functor out of (QG,ω)−Morita.

The functors used in both of these examples have an additional feature. We say
that a functor F satisfies Condition 7.4 provided

Condition 7.4: Any projection map G → G/N where N ⊂ kerω induces an
isomorphism F (RG,ω)→ F (R[G/N ], ω).

(7.5) Lemma: If a functor, F , satisfies Condition 7.4 then the sequence obtained
by applying F to the 0-sequence in 5.B.1 (ia) or (iia) is exact.

Proof: Easy. 2

(7.6) Remark: In both Example 7.2 and 7.3 the X functor satisfies condition
7.4. For example 7.2 see [12, 1.2]. For example 7.3 see [11, Proposition 3.2].

(7.7) Proof of Theorem 1.C.7: Consider Example 7.2 with ω trivial. By [12,
Example 1, p. 115] the map ψn is trivial ( n 6≡ 0 (mod 4) ) or is injective ( n ≡ 0
(mod 4) ). Then by Lemma 7.1 δn+1 is trivial. 2

For other applications we produce a refinement of this technique.

(7.8) Theorem: LetG be a finite 2–group and let · · · →Wn → Xn → Yn → · · · be
a long exact sequence of functors out of (ZG,−)−Morita. Suppose that Y applied
to the sequence in 5.B.1 (ia) or (iia) is exact, and suppose that X satisfies condition
7.4. Finally, suppose that the map ψn+1 is injective if ω factors through C(4)− and
is 0 otherwise. Then δn+1 is trivial unless G is ω–basic, G ∼= C(2)×C(4)−, or M16.

Proof: We can begin by assuming that G is not ω– basic. The proof divides into two
cases as in section 5. Begin with the case in which G has a central K ∼= C(2)×C(2)
contained in G+.

The goal here is to prove that either δn+1 is trivial or G = C(2) × C(4)−. If
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ωG/K factors through C(4)− then Lemma 6.1 implies δn+1 is trivial. If G is abelian
of rank ≥ 3, then it is possible to choose a central K so that ωG/K factors through
C(4)−. So hereafter assume ωG/K does not factor through C(4)− and that, if G is
abelian it is of rank 2.

If at least two of the ωG/C
i

do not factor through C(4)−, then a diagram chase
shows that δn+1 is trivial. (It is helpful to recall the definition of the map β from
section 5.A.1.)

We henceforth assume that ωG/K does not factor through C(4)− and that least
two of the ωG/C

i
do. If G is non–abelian, then let C0 ⊂ K ∩ [G,G]. Choose C1

so that ωG/C1
does factor through C(4)−. Since C0 ⊂ [G,G], ωG/K also factors

through C(4)−, which is a contradiction.
If G is abelian, it is of rank 2 and hence of the form C(2j) × C(2i)−. Note

i ≤ 2 since ωG/K does not factor through C(4)−. Next note i ≥ 2 and j = 1 since
otherwise at most one of the ωG/C

i
factors through C(4)−.

The remaining case is the case in which we have a normal K, but no central
one. If ωG0/K factors through C(4)− then Lemma 6.1 implies δn+1 is trivial, so
henceforth assume that ωG0/K does not factor through C(4)−. If ωG0/C1

does not
factor through C(4)− then another diagram chase shows that δn+1 is trivial, so we
now assume ωG0/C1

does factor through C(4)−.
Note that Z2(G0) = K, since if Z2(G0) were larger there would be an E ∼=

C(2)× C(2) ⊂ Z2(G0) which would be central in G. If E were not in G+ then G0

would be G+
0 × C(2)− which is impossible.

We wish to argue that G0 must be abelian. Note first that Z2(G) ∩ G+
0 = C0

since there are no central C(2)×C(2)’s in G+. It follows that [G0, G0]∩Z2(G) = C0.
But this is not possible since then ωG0/K would factor through C(4)−.

Now we know that G0 is a rank 2 abelian. We know ωG0/C1
does factor through

C(4)−. The conjugation action of G on G0 gives an isomorphism between G0/C1

and G0/C2 which preserves the ω’s. As in the central case it now follows that
G0
∼= C(2)× C(4)−.
Now G is an extension of C(2)× C(4)− by a C(2). Consider the subgroup G+

which is easily seen to be a non–abelian group of order 8 with a normal C(2)×C(2),
hence it is D(8). It is easy to show that the extension for G is semi–direct and we
can choose an element g ∈ G+ of order 2 giving the splitting.

Finally, we determine the action map: α(h) = g ·h ·g−1 for all h ∈ C(2)×C(4)−.
Let t0 and t1 be generators for C(2)×C(4)− with ω(t1) = −1 so t1 has order 4 and
we choose t0 to have order 2 and be in kerω. Note α(t21) = t21, so α(t0) = t0 ·t21, since
the action is non– trivial on the C(2)× C(2) ⊂ C(2)× C(4)−. Clearly α(t1) = t±1

1

or t0 ·t±1
1 . This second possibility cannot occur since α has order 2 on C(2)×C(4)−.

If α(t1) = t−1
1 , then we can replace t1 with t0 · t1 on which α acts trivially. 2

(7.9) Proof of 1.C.8: The ψn+1 maps for the functors in example 7.2 are
described in [12, example 2 p.115]. If n+ 1 6≡ 0 (mod 4), then Lemma 7.1 proves
the result. If n+ 1 ≡ 0 (mod 4), then Theorem 7.8 finishes the proof. 2
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Remark: The Davis–Milgram example, Example 7.3, also follows from Lemma
7.1 and Theorem 7.8.
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