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We wish to study knots, i.e. PL locally-flat embeddings k :S 2n-I c S 2n+l 

and more specifically, their genera. 

To define these genera we must first define a class of pairs of manifolds, 
say 8(k), depending on k. (M,W) E 8(k) iff 

(a) M is a compact orientable PL manifold with ~M = S 2n+l 

(b) W is a compact, PL, orientable, locally-flat submanifold of M 
with W n ~M = ~W = S 2n-I : ~W c ~M is the knot k. 

(c) the fundamental class of W determines, via the embedding, a class 

in H2n(M, SM,Z ) : this class is O. 

Define gy(k) = ½ min (Bn(W) + Bn+ (M) + ISign(M)]) where (M,W) runs 
over all elements of S(k) : Betti numbers are denoted by B and Sign(M) 
is the signature of M. 

Define another genus, gs(k), to be ½ min ~n(W) where W runs over 
all PL manifolds such that ~i(W) = 0 for 0 ~ i < n and there is an 
embedding W ÷ D 2n+2 such that (D2n+2,W) ~ 8(k). 

Clearly gy(k) ~ gs(k). Equally clearly these genera depend only on the 
concordance class of k. 

For any knot, Levine [Le i] defines a set of Seifert matrices. Let A 
be any one of them. If a is the dimension of A, A induces a bilinear 
form X on Z a by the formula ~(x,y) = xAy* where * denotes transpose. 
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Let z(A) be the maximal dimension of a null-space of ~: a null-space of 
is a subspace N c Z a such that X(x,y) = 0 for all x, y ~ N. Define 

m(k) to be ½(a-z(A)). Lemma I, stated at the end of section 2, shows m(k) 
to be well-defined and to depend only on the concordance class of k. Notice 

that a Seifert matrix for k is null-cobordant in Levine's sense [Le i] iff 
m(k) = O. 

Our first result is 

Theorem i : m(k) ~ gy(k). 

Levine's techniques in [Le I] and theorem i suffice to prove 

Theorem 2 : If n ~ 2, m(k) = gs(k) = gy(k). 

A great deal can be said even if n = i. An immersion of a surface into 
S 3 will be called a Seifert ribbon if the immersion has only disjoint, simple, 
ribbon singularities (Fox [Fo 2] p. 72). ~le ribbon genus of a knot, gr(k), 
is the minimal genus of an orientable, compact, Seifert ribbon whose boundary 
is k. Fox's proof [Fo i] that a ribbon knot is slice generalizes to show 
gs(k) ~ gr(k). With these preliminaries completed we have 

Theorem 3 : Let k : S l c S 3 be a knot which has A for a Seifert matrix. 

Then there exists a knot k I such that 
(a) k I has A for a Seifert matrix 

(b) m(kl) = gr(kl). 

Theorem 3 could be proved by using the ideas in Fox [Fo 2], but we prefer 
to give a proof using a method of some independent interest. 

Note that if n a 2 we have calculated any reasonable candidate for the 
special genus, and, if n = I, we have given the best possible lower bound that 
one can get from a Seifert matrix. The results of Casson-Gordon [CG I] show 

that the inequality m(k) ~ gs(k) can be strict. 

m(k) is not easy to compute but lower bounds for it are available. For any 
complex number of norm one, ~, Levine [Le l] defines a signature o~(k). 
It is easy to see ½[~(k)[ ~ m(k). This, together with theorem i, gives all 

the lower bounds for gs(k) to be found in [Mu i], [Tr I] or [KT i]. 

The author would like to thank both M. Freedman and L. Kauffman for 

numerous useful conversations. 
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§ 2. The proofs of Theorem l and Lemma I. 

We recall the classical construction of the double branched cover of M 
along W. W is a proper (W n ~M = ~W), orientable, locally-flat, 
codimension-two, PL submanifold of the orientable PL manifold M m. 

If Hm_2(W,~W;Z) + Hm_2(M,~N;Z) is zero we can find X c M with X n ~M = ~ X; 
~X = ~ X u W; ~ X n W = ~W; and X is a locally-flat, orientable, codimension- 
one submanifold of M. 

M(W), the double branched cover of M along W, is obtained by splitting 
M along X and glueing two copies of the resulting manifold together. This 
split manifold is the closure of M minus a regular neighborhood of X. It has 
the same homotopy type as M - X, so we denote it by M - X. With this abuse 
of notation firmly fixed we continue. The interesting part of the boundary of 
M - X is just two copies of X glued along their copies of W. The involution 
on M(W) just flips the two copies of M - X and intcrchanges the two copies 
of X in the interesting part of the boundary. 

Now given a knot k : S 2n-l c S 2n+l, as a special case of the above 
discussion we get F c S 2n+l with ~F = S 2n-l being the knot k. In D 2n+2 

let F × I be embedded in a collar of ~D so that f × 0 c S 2n+l is our 
original copy of F. Let F A denote F x l u F x I. D(F ̂) denotes the 
double branched cover of D 2n+2 along F A. 

Recall the following construction due to Kauffman [Ka 1]. Given any 
element in Hn(FA;z) it comes from a unique element in Hn+l(D2n+2 -(F×I),FA;Z). 
Since D(F A) is just two copies of D 2n+2 - (F×I) glued together, we can glue 
two chains for our element in Hn+l(D2n+2 -(F×I),F ̂ ) together so as to get an 

element in Hn+I(D(FA);Z). Kauffman shows this construction defines a 
homomorphism <: Hn(F A) ÷ Hn+I(D(F^)) which is an isomorphism when homology 
is taken with rational coefficients. 

A The intersection form on Hn+I(D(F );Q) defines, via K, a symmetric 
(if n is odd: skew-symmetric if n is even) form on Hn(F^;Q). Intersection 

defines a non-singular, skew-symmetric (if n is odd: symmetric if n is even) 
form on Hn(FA). If we pick a basis for Hn(F ̂ ) and get a Seifert matrix A, 
Kauffman further shows that A - A* is the skew-symmetric form and A + A* 
is the symmetric form. Hence the intersection form on Hn+I(D(FA);Q) is non- 
singular so ~D(F A) is a rational homology sphere. We conclude this paragraph 

with an important remark. Notice that z(A) is the maximal dimension of a 
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subspace on which both of our forms vanish: as it were, a simultaneous 
null-space. 

To prove theorem 1 we show that for any (hi,W) e $(k), 
m(k) -< ½g (W)n + ~(~ Bn+I(M) + IS ign(H)  l ) .  To show t h i s ,  c o n s i d e r  N = M u D 2n+2 

g l u e d  a l o n g  t h e i r  b o u n d a r y  S 2 n + l .  Le t  K = F n u W and n o t i c e  K i s  a 

e o d i m e n s i o n - t w o ,  l o c a l l y - f l a t ,  o r i e n t a b l e  s u b m a n i f o l d  o f  N. S i n c e  

H2n(W,8W;Z) + H2n(M, aM, Z) i s  O, H2n(U;Z ) ÷ H2n(N;Z ) i s  a l s o  O. 
T r a n s v e r s a l i t y  g i v e s  u s  an  X c N w i t h  aX = K and a l l  o t h e r  p r o p e r t i e s  

n e e d e d  t o  fo rm t h e  d o u b l e  b r a n c h e d  c o v e r ,  M(K), by s p l i t t i n g  H a l o n g  X. 

I t  i s  p o s s i b l e  to  f i n d  an X s u c h  t h a t  X n D 2n+2 = F x I ,  and  we do so .  

If A(X) denotes the double of X, Kauffman's construction produces a 
homomorphism ~ : Hn+I(bl-X,A(X) ) + Hn+I(M(K)). There are maps 
Hn+ 1 (D 2n+2- (Fxl),F A) ÷ Hn+IC~-X,a(X)) and i, : Hn+I(D(FA)) ÷ Hn+ 1 (M(K)) 
which are both induced by the obvious inclusions. We have an isomorphism 
Hn(FA ) ~ 2n+2 < Hn+I(D - (Fxl),F A) and the following diagram commutes 

Hn(FA;Q) 

Hn+ 1 (M-X,A (X) ;Q) 

" H (D(FA) ;Q) 
n+ l  

" Hn+~ (~(K) ;9) 

Since ~D(F A) is a rational homology sphere, i, is a monomorphism which 
preserves the intersection form. Also note that Hn(F ̂ ) ÷ Hn+I(M-X, (X)) 
Hn(A(X)) is the map induced by the inclusion F ̂ c K c A(X). 

> 

Our remark of three paragraphs above suggests that we hunt for a 
simultaneous null-space. A null-space for the intersection form on Hn(FA;Q) 
is just given by ker s, where s : Hn(FA;Q) ÷ Hn(X;Q) is the map induced by 
inclusion. Note ker s goes to 0 under the map Hn(FA;Q) ÷ Hn(k(X);Q) 
and so we can construct a cummutative diagram 

H n+l 

ker s ~ Hn(FA;Q) 

1 1 
(M-X;Q) , Hn+l (H-X, A (X) ;Q) 



148 

A 
Our goal is to locate a null-space for our other form on Hn(F ;Q) 

inside of ker s. The map 

ker s + Hn+I()4-X;Q) ÷ Hn+I(M-X,A(X);W) > Hn+I(M(K);Q) 

preserves this second form and also admits a nice description. To wit, let 
j : M - X ÷ M(K) denote one of the inclusion maps and let T : H(K) ÷ M(K) 
denote the involution associated with the double branched cover. 
zj : M - X ÷ M(K) then is the other inclusion. The map 

: Hn+I(M-X;Q) ÷ Hn+I(~-X,A(X);Q) ÷ Hn+I(M(K);Q) 

is j, + z,j, . From this description it follows that if V c Hn+I(M_X;Q) 
is a null-space for the intersection form on Hn+I(M-X;Q) then ~(V) is a 
null-space for the intersection form on H (M(K);Q). Moreover, if n+l 

: Hn+I(M-X;Q) + Hn+I(M;Q) is the map induced by the inclusion, V is a 
null-space iff B(V) is a null space for the intersection form on Hn+I(M;Q) 

Let the composite ker s + Hn+I(M-X;Q) ÷ Hn+I(M;Q) be denoted by ~. 
Let N be a maximal null-space for w(ker s). Then for a Seifert matrix, A, 
associated to the spanning surface F we have z(A) ~ dim v-l(N) = dim(ker ~) + 
dimN. We leave to the reader the task of demonstrating theorem 1 from the 
above facts plus the two estimates 

- - ' g  (K) = ½ ( g n ( F )  - Bn(W)) ( a )  d im  k e r  s > Bn(F ) : n 

'- B ISign(M) I) .  (b) dim N ~> dim ~(ker s) - 2( n+ (M) + 

To see (a) note Image {Hn(FA;Q) ÷ Hn(X )} c Image {Hn(K ) ÷ Hn(X)} and 
this latter vector space has dimension ½Bn(K ). The result follows. 

To see (b) consider N c ~(ker s) c Hn+I(M;Q ). We can take a maximal null- 
space of Hn+I(M;Q) containing N, say B. Then elementary quadratic form 
theory shows 

d i m  B = ½ (Bn+I(M ) - I S i g n ( M )  l ) .  

Moreover dim B ~ dim N + Bn+I(M ) - dim ~(ker s) since B n ~(ker s) is a 
null-space containing N and hence is N. The estimate in (b) now follows 

easily. 

We begin the proof and statement of lemma i. The notion of cobordism of 
matrices was defined by Levine [Le i] and we insist that all matrices have 
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property s ([Le l] p.231) before we speak of them as being cobordant. 
If A is a matrix with property s, define m(A) = ½ dim A - z(A). Then 
m(k) = m(A) for A a Seifert matrix for k. Since any two Seifert matrices 
are cobordant ([Le i]), lemma 1 shows m(k) is a well-defined concordance 
invariant of k. 

We now prove 

Lemma 1 : Let A and B be cobordant matrices. Then m(A) = m(B). 

Proof : If ~ denotes block sum, it is easy to prove 
M(X~Y) ~ m(X) + m(Y). Since it is enough to prove m(A(~N) = m(A) 
if N is null-cobordant, it is enough to prove m(A) ~ m(AQN). 
Lemma 1 of [Le i] is just a proof of this for the case 
m(A(~N) = 0 . The proof there adapts easily to cover this 
generalization. 
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§ 3. The proofs of Theorems 2 and 3 

The proof of theorem 2 follows Levine [Le I], lemmas 4 and 5. First 

replace k by a simple knot with an (n-l)-connected spanning surface F. 

We then get a Seifert matrix corresponding to a choice of basis for 

Hn(F;Z). By lemma 1 we can find a basis for Hn(F;Z) so that, if Xl,..., x r 
are the first r = ½Bn(F ) - m(k) basis elements, then the x i span a 
null-space for our form I. 

If n m 2, Levine's argument in lemma 5 of [Le 1] shows that we can 
produce W c D 2n+2 with boundary k, where W is obtained from F by surgery 

on Xl,... , x r. Hence v,(W) = 0, ~* < n, and Hn(W;Z ) is the free abelian 
group of rank 2m(k). This proves theorem 2. 

If n = I, the first two paragraphs of this section are still correct. 

Moreover, we can complete Xl,... , x r to a basis for HI(F;Z ) which is a 

symplectic basis for the intersection form. It is therefore possible to 

represent xl,..., x r by disjoint embedded circles in F. To see this last 
statement observe that we can find some symplectic basis for Hl(F;Z) in 

which the first r ~ ½BI(F ) basis elements are represented by disjoint 

embedded circles. There is a symplectic matrix taking these r generators to 

xl,... , x r. But every symplectic matrix is induced by a homeomorphism of F 

,..., are represented by disjoint embedded (see e.g.p. 178 [MKS I]) so x I x r 
circles. 

Since F c S 3, these circles give rise to an r-component link, L c S 3, r 
such that each component of L links every other component with linking r 
number 0. If L is a slice link in the strong sense then we can finish just r 
as in the case n m 2. 

Let us pause to improve this last statement a bit. L r is called a ribbon 

link in the strong sense if each component of L r bounds an immersed disc so 

that the singular set consists of disjoint simple ribbon singularities. 

Claim : If L r 
of k 

is a ribbon link in the strong sense then the ribbon genus 

is re(k) . 

Proof : By theorem i, gr(k) m m(k) 

ribbon with BI(W ) = 2m(k) 
surgery on the x.. 

so if we can just construct a Seifert 

we are done. Our goal is to do the 
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I t  i s  e a s y  t o  e mbe d  L x [ 0 , 1 ]  c S 3 so  t h a t  L × [ 0 , 1 ]  n F = L x O. 
r r r 

S i n c e  L r i s  a r i b b o n  l i n k  i n  t h e  s t r o n g  s e n s e  we c a n  f i n d  a c o l l e c t i o n  o f  

r i m m e r s e d  d i s c s ,  s a y  D c S 3 s . t .  ~D = L x 1 a n d  D h a s  o n l y  d i s j o i n t  r r r r 
simple ribbon singularities. We next improve D r n F which, at the moment, 

may be terrible. Note first we can assume D n L x [0,I] = L x I. r r r 

Since F is a 2 manifold with boundary, F has a 1 dimensional spine. 

We can move D just a little so that D is transverse to the spine. r r 
D r n spine is a finite number of points which we can assume miss all the 

• n L x [ 0 , 1 ]  singularities of D r Moreover, we do not move ~D r and D r r 
is still L x i. r 

Now by shrinking F toward its spine if necessary we can assume that 

D r n F consists of disjoint simple ribbon singularities and 

D n L x [0,i I = L x 1. r r r 

It is easy to see that the normal bundle of D u L x [0,i] in S 3, r r 
x 0, is just the normal bundle to L × 0 in F. when restricted to L r r 

Use this normal bundle to push off another copy of D u L × [0,i] and call r r 
it D ' u L ' x [0,i]. r r 

Let B c F be the band between L x 0 and L ' x 0. Then r r 
× [0,I]) u (D r' u L ' x [0,l]) is our surface. It clearly (F-B)  u(D r u L r r 

h a s  t h e  c o r r e c t  g e n u s  a n d  i t  i s  e a s y  t o  s e e  t h a t  i t  i s  i m m e r s e d  w i t h  s i m p l e  

r i b b o n  s i n g u l a r i t i e s .  T h i s  p r o v e s  t h e  c l a i m .  

Our last major hurdle is to describe an operation we call tying a link 

into the bands of k. This operation is not well-defined but it is useful. 

To begin, we choose a spanning surface F for k and represent a symplectic 

basis for HI(F;Z ) by a set of canonical curves, i.e. embedded circles 

representing the basis which are disjoint unless the two elements in HI(F;Z) 

have intersection ± i. In this case the two circles intersect in one point. 

We have represented F as a disc with BI(F) bands. If we order this 

basis for H (F;Z) we have a Seifert matrix, A. Call the i th band the band 

through which the circle representing the i th basis element passes. 

In the i th band choose an arc, ~i' cutting the band. Think of the knot 

and its spanning surface as lying in the lower hemisphere of S 3. It is easy 

to find an isotopy of S 3 so that each ~ is brought up into the upper 
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hemisphere, D+ 3 
If we write D+ 3 

after our isotopy 

I i B 2 = [ - ~ , ~ ]  x [ 0 , 1 ] .  

u n t w i s t e d  b a n d s .  

Each m. has a neighborhood in F 2 that looks like z 
as D 2 x [0,i] it is easy to arrange things so that 

D 2 . 

D+3 n F = B 2 x i- 'i where, if D 2 = [-i,i] x [0,I], 
i=l 

In D+ 3 we just have BI(F) unlinked, unknotted, 

We wish to replace these bands by some twisted, knotted, and linked bands. 
To describe this, we consider a framed link in D+ 3 Such a link consists of 
an ordered set of disjoint embedded arcs in D+ 3 with 
aD+3 ith ith 1 ) u (0 x 1 x ~) ~ D+ 3 and we have n ( arc) = ~( arc) = (0 X 0 x ~ 1 

an integer associated to each arc. Such a link has a matrix, B, defined by 
b.. = linking number of i th arc with jth arc if i # j and b.. = integer 

13 th 11 
associated to i arc. 

Given such a link, we get a collection of bands by thickening up the arcs. 
It is possible to do this so that, if B. denotes the image of the i th z 
thickened arc, B. is homeomorphic to D2; B. n B. = ~ unless i = j, 

1 1 x3 1 ~D+3 ~ ~ 1 n B. = ~B. = ( [ - ~ , ~ ]  × 0 x T ) u ( [ -½ ,½ ]  x 1 ) ;  B. t w i s t s  b .  
1 1 Y 1 l i  

times (i.e. ½ x [0,i] x 1 bi i links 0 x [0,i] x ~ with linking number ). 
1 z 

Suppose our framed link had B l (F) components. In D+ 3 we can replace 
our unlinked, unknotted, untwisted bands by 

8~)'- B. . This gives a new knot k I. k I has a spanning surface, FI, with 
i=l 1 

BI(FI) = BI(F ). On F 1 we have an embedded symplectic basis which is ordered. 
With respect to this basis and ordering, the Seifert matrix for k I is just 
A+B. 

If we have a framed link with r < BI(F) components we still do the 
operation by bringing only the first r of the bands into D+ 3 If 

denotes the BI(F) × BI(F) matrix with bij = bij if i, j ~ r and bij = 0 
if i > r or j > r, then the Seifert matrix for k I is A + B. 

We describe a special case of the above which is the only case we need. 
As before we have our knot, k, with spanning surface F and canonical curves 
Suppose the first r of these curves span a null space of the Seifert form. 
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As above, isotope the ai' i = i,..., r, into D+ 3 Our embedded circles 

in F now become a link in D 3 which we frame by requiring each arc to have 

0 twist. Reflect this link through S 2 to get a framed link in D+ 3 Doing 

our operation as above we get a new knot k I. We say k I is obtained from k 
by isotropic reflection. 

We now have: 

Theorem 3 : Let k be a knot with spanning surface F. Suppose 

m(k) = ½BI(F ) - r. Then we can find r disjoint embedded 

circles in F representing a null-space for the Seifert form. 

If we do an isotropic reflection using these r circles, the 

resulting knot k I satisfies 

(i) gr(kl) = m(kl) 

(ii) k I and k have a common Seifert matrix. 

Proof : Complete our r circles to an embedded sympletic basis for 

HI(F;Z ). Look at kl, the knot obtained by the isotropic reflection. 

k I and k have the same Seifert matrix and if L r is the link of 

# -L is the link for k I. L # -L is the link interest for k, L r r r r 
obtained from L by mirror reflection and then joining each component r 
in L r to the corresponding component in (-Lr) by a straight band. 

# -L is a ribbon link in the strong sense so we are done. Lr r 

We conclude with the following observation. 

Suppose k I and k 2 have cobordant Seifert matrices. Then there exist 

knots k 3 and k 4 such that k I # -k 3 and k 4 # -k 2 are ribbon knots and 
such that k 4 is obtained from k 3 by isotropic reflection. 

Proof : Let k 3 = k I # (-k 2 # k2) = (k I # -k2) # k 2. Since m(k I # -k2) = O, 
we can do an isotropic reflection so that it becomes a ribbon knot. 

Hence we can do an isotropic reflection on (k I # -k2) # k 2 to get 

k 4 with k 4 = (ribbon knot) #k 2 . Hence k 4 # -k 2 is a ribbon knot. 
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