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In (5), we and Fred Cohen gave some quite general splitting theorems. These des-
cribed how to decompose the suspension spectra of certain filtered spaces CX as
wedges of the suspension spectra of their successive filtration quotients Dq X. The
spaces CX were of the form Cr x I r / ( ~ ) for suitable sequences of spaces {Cf} and {Xr},
and the construction CX was intended to be a reworking in 'proper generality' of the
constructions introduced in (9).

We no longer believe that sufficient generality was achieved in (5). The original
motivation concerned iterated loop spaces Q.nT,nX, where X is path connected. Con-
sider a cofibration i: A->X, where A is also connected. Let 8: X/A^-C(i)->'LA be
the standard map and consider the fibre Fn(X, A) of Qn-1Sm~1(3) (n > 1). By a slight
elaboration of the argument in (9), §6, which gives complete details when X is the
cone on A, there is a commutative diagram

En (X. A)

Fn (X, A)

where the bottom row is the canonical fibration. By (9), 7-3, the top row is a quasi-
fibration. Since an_1 and an are weak equivalences, by (9), 6-1, dn is also a weak
equivalence. As pointed out to us by Joe Neisendorfer, the methods of (5) can be
generalized to obtain a stable splitting of the filtered space En(X,A). However,
En(X, A) is not of the form CX, but rather of the form Yr/( ~), where {Yr} is a suitable
sequence of spaces which do not split as products.

A quite similar relative James construction M(X,A) was introduced by Gray (7).
By (7), 2-13, this fits into a commutative diagram

MA M(X.A) -+• XIA

XIA

By (7), §2 or (9), p. 59, the top row is a quasifibration, hence /? is a weak equivalence
since /? is a weak equivalence. Again, "LM(X, A) splits, and the methods of (5) apply
after appropriate generalization.
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We introduce ' A-arrays' Y in section 1 and a coalescence functor T from A-arrays to
spaces in section 2. We give a general procedure for constructing combinatorial maps
rY->CX in section 3 and generalize the splitting theorems of (5) in section 4. The
general constructions are probably of greater interest than the given applications. In
particular, our methods lead to many more natural combinatorial maps relating
function spaces than have yet been exploited. The idea is so simple and intuitive that
the reader is quite likely to see his own quite different applications. It is by now
apparent that the use of combinatorial approximations of function spaces is one of the
most powerful tools in the homotopy theorist's kit. Our new combinatorial spaces and
maps are bound to increase the range and flexibility of this tool.

We wish to express our deep thanks to Fred Cohen and Joe Neisendorfer for their
ideas and stimulation. It is only at their insistence that they are not listed as co-
authors of this paper.

An appendix corrects the cofibration conditions in (5), (6) and (lo).

1. A-arrays
Let <9l be the category of compactly generated weak Hausdorff spaces and &~ the

category of non-degenerately based spaces in ^ .
Recall that A denotes the category of finite based sets n = {0,1,...,»} and based

injections; the basepoint of n is 0. We need an observation and a bit of notation before
we can define our main objects of study.

LEMMA 1-1. The category A has pullbacks. A square

is a pullback if and only ifp = | Im <j> n Im \Jr - {0}|.
Proof. Given <j>: r - » t and xjr-.s-^-t, consider the set

n = {{a,b)\(j){a) = ir(b)} c r xs.

Order its elements, starting with Oth element (0,0). The ordering specifies a bijection
p-̂ 77-, where p is the cardinality of n -{(0,0)}, and the projections TT-> r and TT-> S
induce projections displaying p as the required pullback in A. The last statement
should now be clear.

Notations 1-2. For 0: r-> s in A, let 2^ c £6 denote the sub-group consisting of those
permutations T such that T(b)elva.<j> if 6elm0. Such a T satisfies r<f> = <pa for a
uniquely determined creSr, and T-><7 specifies a homomorphism S^->Sr.

Definition 1-3. A A-array Y is a collection of unbased spaces Y^ indexed on the
morphisms <f> of A together with maps

for each composable pair of morphisms {$, \jr) such tha t the following properties are
satisfied. Write Yr for the space indexed on the identity morphism of r and note that ,
for <j>: r ^ - s, we are given maps

YT< YA >YB.
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(1) If <f> (resp^) is an isomorphism (that is, a permutation), then <f>* (resp^-*) is a
homeomorphism; if <f> (resp ft) is an identity morphism, then 0* (resp r/r*) is an identity
map.

(2) For <f>: r-+ s and i/r: s->t, the following diagram commutes and its square is a
pullback:

(»»>•

*.

(3) If the square (with common composite denoted £)

- * • t

is a pullback in A, then the following square is a pullback:

" Y,

(4) For 0:r->-s, the map <f>%:Y^Ys is a S^-cofibration. Here, for T G S ^ with
f> = <f>cr, the action of T on Y* is specified to be the composite

an action of Sgon Ys is obtained by specialization to the identity morphism of s, and
<j)+ is necessarily E^-equivariant.

A A-array is said to be E-free if each Ys is 26-free; it follows that each Y^ is S^-free.
Those who prefer a more categorical description are invited to contemplate the

relationship between this definition and exercise 3 of (8), p. 223.
Since we shall make heavy use of them, we recall the following notions from (5).

Definition 1.4. A coefficient system is a contravariant functor ff-.A-yW such that
^ 0 is a point. A A-space is a covariant functor X: A ->• tfl which preserves puUbacks and
is such that Xo is a point and each <$>: Xr->Xs is a S^-cofibration. Since 0 is an initial
object in A, it follows that X takes values in $~.

In (5) we erroneously omitted the pullback condition (which is automatic for II-
spaces, to which we usually restricted ourselves) and misdefined 2^; see the appendix
for discussion. The standard example of a A-space is {Xr} for a based space X. The
standard example of a coefficient system is ^(Z) = {F(Z, r)} for an unbased space Z,
where F(Z, r) is the configuration space of ordered r-tuples of distinct points of Z.
Compare (5), 1-6 and 1-9. The following example makes it clear that the notion of a
A-array really does generalize the context of (5).
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Example 1-5. Let <& be a coefficient system and let X be a A-space. Define a A-array
Y = YC^7, X) to consist of the spaces J^ = #8 x Xr for <j>: r -»• s and the following maps
for i/r: s->t:

<S?g xxr< % x l , > <8t xXs.

The pullback square postulated in (2) is just

Cfi V Y
• 6 , X A ,

^ X 1 1X0

0 V V

1X0 • X 1

The pullback square postulated in (3) is the product of c€t with a pullback square given
by our assumption that X preserves pullbacks. We write Y(#, X) when X = {Xr} for a
based space X. We write Y(Z, X) when <£ = ^(2) for an unbased space Z.

We give several procedures for generating further examples.

Examples 1-6. Let Y be a A-array.
(i) If Xe<%, define a A-array Y xX with

(Y x i ) # = i
and with the evident maps.

(ii) If Xe$~, define a A-array Y + A I with

(iii) If "̂  is a coefficient system, define a A-array ? x Y with

{VxY)t = V,xYt for 0

and with maps (for xjr: s->t)

(iv) By symmetry, if X is a A-space, define a A-array Y xX with

( Y x X ) r r ^ x I f for 0 : r ^ s

and define a quotient A-array Y+ A X with

(Y+ AX), = 7 | A l f = ^ xXJYj x{*}.

Definition 1.7. Let A and Y be A-arrays. We say that A is a subarray of Y if there is a
map i: A ->• Y of A-arrays such that each i^: A^ ->• Y^ is a closed inclusion. Note that the
square of (2) for A will be a pullback provided that both of the following squares are
pullbacks: A _ »» . . . o. _ A,
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Similarly, the square of (3) for A will be a pullback provided that the right square just
displayed is a pullback for all (0, ifr).

Subarrays of appropriate YC^, X) appear naturally in the study of iterated loop
spaces, where they lead to the relative approximations discussed in the introduction.

Example 1-8. Let <&n be the little rc-cubes operad ((9), p. 30) and let (X, A) be an
NDR-pair in &~, with * e A. Define a subarray Y = Y(<«fn, X,A)oi Y(Vn, X) as follows.
For ^: r -»• s, Y^ consists of those points

((cv ..., cs>, xx,..., xr) e <£ntS xXr

such that whenever x^A, the intersection in Jn, J = (0,1), of the sets

(cJ(O), 1) xcftJ-1) and cfc(J")

is empty for all &#=j, where j = </>(i) and where ct = c'jXC^-.J y.Jn~1->Jn. In
fact, we have inclusions of subarrays

Y(Vn,A) <= Y(Vn,X,A) cz Y(Vn,X).

A closely related example leads to the relative James construction.

Example 1-9. Let J( be the operad with J(t = 2 y ((9), p. 19). For (X,A) as above,
define a subarray Y = Y ( ^ , X, A) of Y(«-#, X) by letting Y^ consist of those points

(o;xv...,xr)e~#8xXr

such that x^A implies cr*1^) = s. This is precisely the image of YC^,X,.4) under
the morphism

of A-arrays induced by e:(^1-^-^£ (see (9), pp. 34 and 59).
There is also a configuration space analog of Example 1-8.

Example 1.10. Define a subarray Y = Y(Jn,X,A) of Y(Jn,X) as follows. For
<f>: r -* s, Fjj consists of those points

« c 1 ; . . . , cg>, xx,..., xr) e F(Jn, s) xXr

such that whenever x^A, ck$(c'}, 1) x{cj} for k =£j, where j = <fr(i) and where

Cj = (c'pc))eJ y.Jn~1 = Jn.

Centrepoint projection specifies a S^-homotopy equivalence

and these maps give a morphism g of A-arrays.

2. The spaces FY
We give a coalescence functor F from A-arrays to spaces. The discussion parallels

that of (5), §2.

Definition 2 1 . Let Y be a A-array. Define

= U7r/(~),
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where the equivalence relation ~ is that generated by the elementary relations
x < y if xeYr,yeY3, and there exist <f>: r - > s in A and zsY^ such that x = tf>*{z) and
V = 0*(2)- Let F8FY be the image of LI Yr and give FsFY the quotient topology.

Then give FY the topology of the union of the
Observe that a collection of maps fr: Yr->Z extends to a map/ : FY->Z if and only

if the following diagram commutes for each injection $: r-> s:

f,

Z

Categorically, FY is the coequalizer in the diagram

where a and {I have restrictions <f>*: Y^ Y8 and $* :Y^Yr.
The following lemma will lead to the verification that the spaces FY are well-

behaved colimits of sequences of cofibrations. Its proof will display the role played by
the pullbacks in our specification of a A-array. We need some notations.

Notations 2-2. Let Y be a A-array. Define Z^ = Y^/I,^ and Zr = 7r/Sr. Observe that
we obtain induced maps ,, ,

zr<— zt-^z.
such that <f>* is a cofibration. Let <rq: r - 1 -> r be the qth ordered injection, 0 < q < r
(so that q + 1 £lm o-q), and define

8Zr = T U Im crq. c Zr and Zr = ZT- 8ZT.
«=o

I t follows from (l), app. 2-7, that 8Zr-> Zr is a cofibration. (This entails replacing G by
2 r in the cited result and contemplating the relationship between the intersections it
deals with and the pullbacks of definition 1-3 (3).) Finally, define

LEMMA 2-3. The natural map Yq->FrTY factors through a map nq:Zq-+FrYY,

0 < q < r. For an element aeFrTY, there exists a unique q < r and a unique xeZq such
that nq (x) = a.

Proof. If y e Yq and r e 28, then y <ry since

T * ( T * ) - % ) = y and T*(T*)-%) = ry.

This implies the first statement, and of course iy < y also holds. Let q be minimal such

that nq(x) = a for some x e Zq. We claim first that x e Zq. Let x be the image of x e Yq.
If xe8Zq, then x = <j>*{z) for some <j>: p-»q and zeY^ withp < q. Thus 0*(z) < £, and
this contradicts the minimality of q. I t remains to prove uniqueness, and it clearly
suffices to verify that x ~ x" implies x < x". If x' < x, then, by the arguments just
given, we must have that x' differs from x by a permutation and thus that x < x'. Thus
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suppose that x < x' and that either x' < x" or x" < x'. We shall verify that x <x"
under either hypothesis. Inductively, this will verify the desired implication and so
complete the proof. Assume that

x = <f>*{y) and x' = <}>*{y) for 0:q->-q and

Case 1. Assume that

x'= i]r*{z) and x" = ^*(z) for rjr:q'->q" and

Let £ = ^o§J. Then the following diagram is a pullback:

1'

Choose wG Fs such that tfr*(w) = y and 0*(w) = z. Then

* = <!>*{y) = ^ ^ ( w ) = £*(«>) and a;" = v^*(z) = f^^{

Case 2. Assume that

x' = f+{z) and *" = ^*(z) for ^ :q" -*q ' and

Construct a pullback in A (with common composite £):

-* - q

Then the following diagram is a pullback:

Choose we Yg such that i*{w) = y and x*(w) ~ z- Then

x' =

and thus x < x' and x' > £*{w) eYp. By the minimah"ty of q, we must havep = q. Thus
i must be a permutation. By virtue of the element of choice in the construction of
pullback diagrams in A (see Lemma 1-1), we may choose our original pullback so that
% is the identity. Then i* is the identity and w — y. Consider \Jr*: Y^-^YX. This makes
sense since 0 = frox- Let v = i/r*(y) eYx. Then

) = x*^*(y) = X*(v) and *" = ft*(z) =x =
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With this description of points, it is a simple matter to check the validity of the
following inductive description of FY.

PROPOSITION 2-4. F Y is a well-defined space in % and in 3~ if Yo has a non-degenerate
basepoint. For r > 1, the following diagram is a pushout:

dz, - *• F,_,rY,

n 1
-*• FPY

where dr(crq*z) = nr_x(cr*z) for 0 < q < r, 77r_1:Zr_1->i1
r_1FY. The inclusions

Fr_1 TY->Fr FY are thus cofibrations, and

F^Y z Zr/dZr = DVY.

The essential point is that dr is well defined.

Examples 2-5. (i) If Y = Y(<&, X) for a coefficient system %> and A-space X, we write
FY = CX. We write CX when X = {Xr} for a based space X and C(Z,X) when <€ = %(Z)
for an unbased space Z. These spaces were the objects of study in (5).

(ii) For a space X, F(Y x l ) ~ (FY) x l ; if X is based,

( Y + A l ) ^ ( F Y ) + A X

Here Dq(Y+ A X) ~ (Dq Y) A X for q > 0.
(iii) If A is a subarray of Y, then FA is a closed subspace of FY.
(iv) IfY = Y(<rn, X, A) as in Example 1-8, then FY is the space EJX, A) introduced

and studied in (9), §6.
(v) If Y = Y{Jt, X,A) as in Example 1-9, then FY is the relative James con-

struction M(X, A) of Gray(7) and (9), p. 59.
(vi) If Y = Y(Jn, X, A) as in Example 1-10, then FY is a space equivalent to

En{X, A) which we shall denote E(Jn, X, A).
We have the following invariance statement, which generalizes (5), 2-6 and 2-7.

LEMMA 2-6. Let f.Y-^-Y'bea map of A-arrays. If each fu-.Z^-* Z'^ is a (weak) equi-
valence, then Tf: FY-^-FY' is a (weak) equivalence. If Y and Y' are ~E-free and each
f^: YQ-*- Y'f is a weak equivalence, then eachf^.Z^^-Z'^ is a weak equivalence.

Proof. The second statement holds by an obvious covering space argument. In the
presence of cofibrations, pushouts and colimits of (weak) equivalences are (weak)
equivalences, hence it suffices to check that/ r restricts to a (weak) equivalence

8Zr->dZ'r

for r ^ 1. Since o~q,: Zr-1 ->• aa, Zr_1 is a homeomorphism, it suffices to observe that an
inductive pushout argument shows that / r restricts to a (weak) equivalence

U (cri.Zr_1)-*' U ( ^ . ^ - i ) , (0^q<r).

The relevant intersections are easily interpreted as spaces 0* Z^ by use of the pull-
back condition of definition 1-3 (3).
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3. Combinatorial maps FY'-> CX
Our splitting theorems are based on the use of appropriate 'James maps'. The

definition of these maps is only one application, albeit the most important one, of a
quite general framework for the construction of combinatorial maps F Y -*• CX. The
'Segal maps' exploited in our study of the Kahn-Priddy theorem (2,3) also fit into
this framework.

Definition 3 1 . An ordered functor F: A -> A is a covariant functor which preserves
pullbacks. By an easy exercise in the use of pullbacks in A, it follows that r < s implies
F{r) < F(s), with equality if and only if F(r) = F(s) for all r < s. That is, F is either
constant on objects or eventually strictly increasing.

The characterization of pullbacks in A given in Lemma 1-1 makes it a simple matter
to verify whether or not a given functor A-> A is ordered.

Example 3-2. For a ^ 0, define an ordered functor Jq: A-> A as follows. On objects,
Jq(r) = 0 if r < q and Jq(r) = (r —q,q) if r ^ q, where (r — q,q) is the binomial co-
efficient. On morphisms 0: r-> s, Jq{(j>) = <fi as specified in (5), 3-1. To review, let R be
the set of ordered injections q -> r, let S be the set of ordered injections q -> s, and
give R and 8 the reverse lexicographic ordering. This choice of ordering yields identi-
fications of R and S with the positive elements of (r — q, q) and (s — q, q). Map R to S
by sending \jr: q-> r to the composite

where T is the unique permutation such that (j)\jrT is ordered. Via our identifications,
this function R->S specifies $5. Observe that J1 is the identity functor / . By convention,
Jo is the constant functor at the object 1.

Example 3-3. The category A has an evident wedge sum v: A xA-^-A and smash
product A:A xA-»A ((2), 2-1), and these are easily seen to preserve pullbacks. If F
and F' are ordered functors A -> A, then so are the composite F' o F, the wedge sum
FvF' = vo(F xl")oA, and the smash product FAF' = AO(F xl")oA. Let En

be the constant functor at the object n. Then the n-fold wedge sum of F with itself is
F A En. Define Kq = JqA Eq, and Sa = IA Eg] for q ^ 0.

The Jq lead to James maps. The Sq lead to Segal maps and the Kq lead to maps
suitable for the analysis of certain composites of Segal maps and James maps. This
analysis proves the Kahn-Priddy theorem. We shall say no more about this applica-
tion here, but the connection will be obvious to readers of (2,3).

The following definition makes sense by comparison of definitions 1-3 and 3-1.

Definitions 3-4. Let F: A-> A be an ordered functor and let Y be a A-array. Define a
new A-array F*Y by letting (F*Y)^ = YFu), with structural maps

W (5

Observe that the inclusion UyF(r)^- UYr induces a map FF*Y^- FY which is natural
in Y.

We are interested in constructing combinatorial maps FY->CX associated to a
given ordered functor F: A->-A. It suffices to construct maps Y-+F*Y('tf,X) of A-
arrays since we can then apply F and compose with the map

) = CX
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given by the previous definition. The following symmetric pair of definitions specifies
what is needed.

Definition 3-5. An ^-system for a A-array Y is a coefficient system ^ and a sequence
of maps £r: Yr->

 <&F(T) such that the following diagram commutes for <f>: r-> s in A:

Definition 3-6. An .F-space for a A-array Y is a A-space X and a sequence of maps
7rr: Yr-^XF(r) such that the following diagram commutes for <j>: r-> s in A:

- * • x,F{s)

An enjoyable diagram chase gives the following result.

LEMMA 3-7. Given an F-system {(S, £) and an F-space (X, n)for a A-array Y, the maps

specify a morphism Y^•F*Y(<ia, X) of A-arrays and so induce a map FY->- CX.
This observation provides a remarkably versatile tool for the construction of maps

between function spaces. Even when Y has the form C'X', these maps are much more
general than could be obtained from sequences of maps relating "g" and # and X' and
X separately.

In practice, the construction of .F-systems and of J^-spaces is quite asymmetric. We
next describe extra structure on A-arrays which ensures the existence of Jg-spaces
(Dq Y, n) for all q 3s 0. It was to obtain this structure that n-spaces were introduced in
(5). Recall that II is the category of finite based sets n and based functions <f>: r-> 8
such that ^-1(j) has at most one element for 1 < j ^ s; A is the subcategory of those
(f> such that ^-1(0) = {0}. An injection cf>: r -> s determines a projection (j)-1: s-> r via
</>~1^>(a) = a and <j>~l(b) = 0 if 6^Im0. The following observation will clarify our
definitions and their relationship to the definitions of (5).

LEMMA 3- 8. Consider the following two diagrams, where <j>,ijf,u), and % are all injections:

and

Assume the first diagram commutes. Then the second diagram commutes if and only if the
first diagram is apullback.
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Definitions 3-9. Let Y be a A-array.
(i) Y has projections if for every pullback diagram

83

in A, there is a map (ft, a>)*: Y<f>->Yl such that the following diagram commutes:

y.

(to. to)*

When p = r, so that ft is a permutation, we require

(ft,w)* = o*#?:Yt = Y^ + Y^Yr

(ii) Y is a II-array if for every composable pair of injections {$, iff), there is a map
ft*: Y&-* Y*J, such that the following diagram commutes, where (j>ft = on is a pullback
relation as in (i):

y, • * - -*• Y.

* • * •

(Here the ft* and w* are new maps, while the remaining maps are given by Definition
1-3.) When ft is a permutation, we require

and it is useful to think of ft* as ft*1 in general; then the right square above translates
under the lemma to a functoriality diagram with respect to morphisms in FI.

An immediate diagram chase gives the following result

LEMMA 3-10. If Y is a Yl-array, then Y has projections

(ft,w)* = <o*ft*:Y^YH = YM-*Y%.
A simple computation from the combinatorics of (5), 3-1 gives the following result,

which may be viewed as a generalization of (5), 3-2.

LEMMA 3-11. If the A-array Y has projections, then (DqY,n) is a Jq-space, where

nr:Yr^(DqYY'-«-<»

has ith coordinate the composite of the projection

induced by the ith ordered injection ftt: q-»• r and the natural quotient map
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Example 3-12. A Il-space is a functor X: II -+% whose restriction to A is a A-space.
If ^ i s a coefficient system and X is a Il-space, then YC&7, X) is a II-array. For xjr: p -> r
and0:r->s, f* = l xf-^

Example 3-13. If Y has projections or is a II-array, then the same is true for all of the
constructions on Y in Example 1-6 provided that X, where used, is a Il-space.

Example 3-14. The subarrays of Examples 1-8-1-10 inherit structures of II-array
from their ambient II-arrays.

In sum, the theory only needs A-arrays with projections, but we know of no examples
which are not actually IT-arrays. We shall state our results for FI-arrays, but they will
all apply to A-arrays with projections.

4. Splitting theorems
To prove splitting theorems for II-arrays Y, we need only construct appropriate

Ja-systems (#, g) and parrot the arguments of (5).
We adopt the convention Do Y = Fjj" to give D0Ya basepoint. (Alternatively, we

could assume that Yo and FY have basepoints.)
The following homological splitting theorem generalizes [5, 440].

THEOREM 4-1. Let Y be a H-array and let G be an Abelian group. For all r ^ 1 (in-
cluding r = oo),

H( r ) *(g
8 = 0

These isomorphisms are natural in Y and O and commute with Bockstein operations.
Proof. Let JV be the coefficient system with each ̂ Vr a point. For any ordered functor

F: A-> A, the unique maps Yr^-^VF(r) specify an .F-system in the sense of Definition 3-5.
Taking F = Jg,we obtain James mapsja: F Y -> NDa Y for q > 0, where N is the infinite
symmetric product functor. Herej0 carries FY to Yo. The rest of the argument is pre-
cisely like that of (5), pp. 477-497. As there, we make use of II-arrays Y+ A X (compare
Examples 1-6(ii), 2-5(ii), and 3-13) to pass from the case with each Yr connected and
G = Z to the general case. Note that Do( Y

+ A -X") = (Do Y) A X under our convention
D0Y=Y+.

The following homotopical splitting theorem generalizes (5), 8-2. We write E00 for
the suspension spectrum functor (rather than Qx as in (5)).

THEOREM 4-2. Let Y be a "E-free U-array. For all r ^ 1 (including r = oo), there is a
natural isomorphism in the stable category

£r:£°°(.FrrY)+^ V S»Z)gY.
a=o

Moreover, lcT is the sum over q of restrictions of James-Hopf maps

To prove this, we need a canonical way of obtaining a Jg-system (If, £g) for Y. We
follow the ideas of (5), §5. We have a quotient map n: Yg->Zq = YJ'Lq and we have m
ordered injections y^rq-^r, where m = (r — q,q). Define £9 r: Fr->Z™ by

This gives a J9-system, but it has the defect that the receiving coefficient system given
by the powers of Zg is not separated. We remedy this by fiat.
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Definition 4-3. Y is said to be separated if the maps E,qr: Yr^-Zg
n take values in the

configuration space F(Zq,m) for all q and r. Taking <& = ^(Z^ in Definition 3-5 and
Lemma 3-7, there result canonical James maps

jq:TY+^C(Zg,DqY)

for all q ^ 0; here^0 carries FY to the subspace

Fo x 7 0 c FXC(YO, Y+) = (Yo xY0)+.

For all q, the disjoint basepoint adjoined to FY serves to make j q a based map.
Of course, when Y = Y(<«f, X) as in (5), Zq is unnecessarily large. Here we can first

project ^ r xXr to ^ r and then apply the construction just given (provided that ^
is separated). This replaces ZT = ^r x ^ Xr by £8T = ^V/2,.. From this point, the proof
of Theorem 4-2 is exactly the same as that of (5), 8-2, except that 3Sr there is replaced
by2rhere. In particular, we exploit Example 1-6 (iii)to replace general S-free Fl-arrays
Y by the separated Il-arrays Y = ^(R00) x Y. Lemma 2-6 ensures that the pro-
jection Y -*• Y induces weak equivalences FY -> F Y and DqY^-DqY.

We conclude by discussing the relative splitting theorems promised in the intro-
duction, and we assume given a cofibration A cz X oi nondegenerately based spaces.
While A and X need not be connected, we only obtain implications for function
spaces if they are.

THEOREM 4-4. For all r ^ 1 (including r = oo), there is a natural homotopy equivalence

kr:XFrM(X,A)^ V S ( 4 M A I ) .
8 = 1

Moreover, kr is the sum over q of restrictions of James-Hopf maps

Proof. Y{Jt, X,A)r<=- ^(T xXr. Projecting to ^ and using the James system of (5),
4-3, we obtain a «/g-system. Alternatively, as in (5), §3, we can forget about d( and
ignore equivariance. In any case, we obtain James maps

jq: M(X, A)^Dq Y(uf, X,A) = A™ A X,

and the rest of the argument is precisely like that of (5), pp. 474-476.
The function space implication is clear from the introduction, as is the implication

of the stable splittings o£En(X, A) and E( Jn, X, A) obtained by application of Theorem
4-2. Of course, the latter spaces are equivalent by Lemma 2-6 (compare Examples 1-8,
1-10, 2-5, and 314). For concrete applications, it is important to know just how far
their stable James-Hopf maps desuspend, and use of E(Jn, X, A) gives better results
on this question. The precise analysis is exactly as in (5), pp. 480-481. The James
maps for E( Jn, X, A) are obtained from the Jg-system derived by including

Y(Jn,X,A)r in F{J»,r)xXr,

projecting to F(Jn, r), applying the canonical-maps

where B{Jn,q) = F(Jn,q)/Xq,
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of (5), p. 479, and then embedding B(Jn, q) in R* for the smallest possible t. The
resulting James maps

jq:E{J«,X,A)-+C(Bt,Dt(J»,X,A))

lead to James-Hopf maps Z*0(«7n,X,A)->I,tDq(Jn,X,A) as in (5), 5-5. We studied
the relevant embedding question for B(Jn, 2) in (5), 5.8. As observed by Cohen (4), the
fundamental theorem of algebra implies that B( J2, n) embeds in R2n.

Appendix
Due to a misreading of Boardman and Vogt (l), app. 2-7, for which the first author

accepts all blame, the cofibration conditions are mis-stated in (5), (6) and (10). For an
injection <j>: r-> s, there are three groups of permutations T: s-> s one might consider,
namely those with T(b) = b for b e Im 0, those with T(b) = b for b $ Im <p, and those with
T(6)elm0 if ftelm^ and thus also T(6)£Im^ if 6^Im^. As in this paper, it is the
third and largest group which should be taken as 2^ in (10) 1-2 (3). In (5), 1-8, the group
denoted Sg should consist of those permutations which fix the set of letters in s, but in
any case the present definition, (1 -4), of a A-space is to be preferred. (It is easily checked
that the definitions of FI-spaces here and there are equivalent.) These changes make
our references to (l) correct but result in no further changes in these papers; in par-
ticular, the whiskering construction of (10), app. B, works to arrange the present
more stringent equivariant cofibration condition.

In (6), 1-1 (i), the inclusion of 0iEs^r+iTi in # r + 1 should be required to be a Sg-
cofibration, where S s = {<r\ if ies and T V = prj with yoeSr) then jes} c= Sr + 1 and
s c { o , l , , , , , r } . The conditions (6), 1-1 (i.a) and (i.b), clearly still imply this condition
since they imply that the intersection is empty unless s = {i}. As the main examples
all proceeded by verification of the latter conditions, the correction is of only pedantic
interest and results in no further changes.
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