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In order to apply surgery theory we need methods for

determining whether a given surgery obstruction

o(f : N+ M,F) ¢ Ln(EG,m) is trivial. Notice that it is

more important to have invariants which detect L-groups than

to be able to compute the L-group themselves.

One approach 1s to use numerical invariants such as
Arf invariants, multisignatures, or the new "seml-invariants"

{M1], [Dal, [H~Mad], [P]. Another approach 1s to use transfer

maps. For example,
(1) Dress [D] has shown that when G 1s a finite
group, Ln(EG) is detected under the transfer

by using all subgroups of G which are hyper-

elementary.
(11) wall [W9] has shown that when M 1s closed and

@ 1is finite, then image (¢ : [M,G/TOP] = Ln(ZG,m))
is detected by Ln(ZG2,os), where G, 1s the

2-Sylow subgroup of G.
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(111) If G 1is a finite 2-group, then Lﬁ(ZG) is

detected under transfer and projection by using
subgquotients of G whlch are dihedral, quater-

nione, semi-dihedral, and cyclic (see [T-W]).

The goal of this paper 1s to give a systematic procedure
(when G 1is a finite 2-group) for computing transfer maps
and the "twisted" transfer maps arising from codimension 1
surgery theory. Recall that if H 1s any subgroup of a
finite 2-group G, then there exists a sequence of subgroups

H = H0 c H1 < H2 C ... € He = G such that Hi is an 1index
2 subgroup of H1+1 for 1 =0, ... ,6 -~ 1. Thus we might

as well assume that H 1s an index 2 subgroup.

Suppose H 1s an index 2 subgroup of an arbitrary group

G. Then we get the "push forward" exact sequence
fl
cer + L (ZH,0) ~— L (ZG,0) + L (£) + ...
(see [R11,82), and the transfer exact sequence
£ !
el * Ln(EG,m)—+ Ln(ZH,m) + Ln(f') T
(see [R11, §7.6).

One c¢an view 8 = ZG as a twisted gquadratic extension

of R = ZH. More precisely, suppose we choose t ¢ G - H.

We let a =t° ¢ H, and we let p : R+ R be conjugation by

t. Then,

s = R (/3] = Rpttl/(t2 - a),

where t 1s viewed as an indeterminate over R such that

tx = p(x)t for all x e R.
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Let vy denote the Galois automorphism of S over R

given by

Yy : S+ 8; x+yt+x -yt (x,y € R).

We want to extend the classical results in [L] chap. 7

and [M-H] appendix 2 where f : R+ S 1is a quadratic extension
of fields.

Recall that Wall [W2] defined groups Ln(R,a,u) for any
ring with anti-structure, i.e. a 1s an anti-automorphlsm,

u is a unit, a?(r) = uru™t for all r e R, and afu) = u 'l

For example, L (ZG,0) = Ln(ZG,am,l), where o (I ngg) =

-1
z ay :
ns)(g)s

Suppose we have a map of rings with anti-structure
) (R,ao,u) + (S,a,u)
where S 1s a twisted quatratic extension Rp[/EJ with
Galois automorphism vy. Then we also have the following

y-conjugate map

LE (R,uo,u) + (S,ya,u).

P
Moreover, we can "twist" (a,u) to get ( )

where &(s) = /a Yu(s)ﬁi—l for all s ¢ S and U = va Ya(ﬁi'l)u.

This ylelds a map

-~ ~ ~

t : (R,3,,0) > (8,8,U),
where &0 is the restriction of &.

~

e’ -
If we twist (yo,u) we get that (yo,u) = (y&, - @),

and we get a map
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Tr 1 (R,Gp, - B) + (5,vd, - @).

Then we get the following amazing isomorphisms.

r, s L _(F) 2 (r) 1L (e 2L, Or)
¢ poely s (3! e Py (?’!
s L (') 2 L (B T L (e, (e

1
The maps F! and T° are defined using an algebraic

version of integration along the fibre for line bundles. 1In

the case of group rings the isomorphism T, 1s implicit in

[W1] chap. 12.C, [C-S1] and explicit in (H]. The general case
is due to Ranicki (after some prodding by us). (See [R1], §7.6
and the appendix by Ranicki in [H-T-W1).

1
By combining T, for f, T  for Yr, and scaling
isomorphisms

o’ i L (S,a,u) > L (5,vd, - D = L (5,7a,0) (see 2.5.5)

Raniclkd, constructed the following commutative braid of exact sequences
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(0.1) Twisting Diagram for f : (R,uo,u) + (S,a,u)
e £y 7!

L (s - q’a’u)/\

Ln_2(R;a0,u)

L, (S,Ya u) Ln(Sjya,—ﬁ) L, (R,&, ,=1)
( ///;ﬁ (Yf ) (f )
n+1 n+1( £ ) Ln(f!)
\ N S
/ /

r'x+1(S o, u)

L
(R,a,,u)
n+l(S,ya, -i) L (R ao,-u) u-1 0

L
e ’ \_Ln/—l(s,ya ’U

—~ !

Te! T, Yo'

(R a 1) Ln_l(S;a,u)

Thus the problem of computing f, and Yf! is intimately

related to the problem of computing the "twisted" maps ?ﬁ

Lo
and Y¢°.
Examples:

1. Suppose Ln = Lg, n is even, plus R and S are

seml-simple rings. Recall that Lgdd is trivial for semi-
simple rings (see [R21). Thus, all of the groups along the
bottom of (0.1) are trivial and the groups along the top form

the following exact ‘octagon (see also [Warl and [Lel).



(0.2) Semi-simple 8-Fold Way

f.'I
—~
f1 'f“"’
L (R,84,u) L, (8,8,-1)

P
Yf!oJé\\\\ £ j/ Yelyra

!
L (S,0,-u) +——L_(R,a,,-u)

(a) Suppose we have
f : (F,id,1) » (K,id,1)

where F + K is a quadratic extension of flelds. If n =0,

then Ln(F,id,—l) = Ln(K,id,—l) ~ (0); and we get the
following exact sequence
(0.3) 0+ Ly(K,y) > Ly(F) > Ly(K) + Ly(F) + Ly(K,y) + 0

which extends the exact sequences of Lam [LJ, chap. 7 and

Milnor-Husemoller [M-H], appendix 2.

(b) Suppose we have
£ : (K,1id,1) + (D,a,l)
where D is a quaternionic division algebra and XK 1is a
maximal subfield of D. Since aIK = id, o must be an
involution of type 0. If we let LO(D;O) = LO(D,a,l),
Lo(D;Sp) = Ly(D,a,-1), and Ly(K,p) = Ly(K,85,+1), then we

get the following exact sequence
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(0.4) 0 ~» LO(D;Sp) - LO(K,p) - LO(D;O) + LO(K) - LO(D;O)
¥

LO(K,p)
¥

LO(D;Sp)
¥

(c) Suppose D 1is a division ring with center F. Let

K be a quadratic extension of F such that D@FK is still
a division ring. Then for any (anti) involution a, on D,

we get another example

(D,zy,1) > (DO;K,a,81d,1)

(d) (trivial quadratic extension) Suppose we have
(4 : (R,ao,u) + (R x R, a5 x ag,u x u)

~

where d 1s the diagonal map. Then Ln(S,&,iu) is trivial
and (0.2) breaks into the short exact sequences of the form

dl
1~ Ln(R,ao,u)——4 Ln(R,ao,u) X Ln(R,aO,u) > Ln(R,aO,u) + 1

2. Codimension 1 Surgery (see [B-L1, [Mel, [W1] Chap.

12¢, [C-S1], [C-S21, [H], and [R1] Chap. 7)

Suppose we have
£ = (EH,am,l) -+ (ZG,am,l)
where H 1is an index 2 subgroup of G. Also, suppose XM

1 be

i1s a closed manifold with (m;X,0;X) = (G,0). Let ol
a connected submanifold such that ml(v(Y + X)) 1induces the

map ¥ : G + G/H = {+1}. Then by combining results of Wall
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{Wil, chap. 12C, Cappell-Shaneson [C-S1}, and Hambleton [H],

we get the following commutative dlagram with exact rows

Ln(ZH,m)
Oy f!
.v. * 8(X) ——— [X,6/T0P] —— L _(ZG,n)
¥ —
[Y,G/TOP] Yelgt
~ ¥ A 4
O* o~
L, _1(ZG,0¥) L (f) L. (ZH,& ,-1)
11 ?T zdt 1 I'! I

“ o= .~ _— .
Ly 1(ZH,8, 1) —— 1, _(Z6,5 ,1) — L _;(F)) — L_,(ZH,&,1)

where t ¢ G - H and L. = L° .
n n

Assume

lY =

m,X and n 2 5. If £ : M+ X represents

an element in S(X), then J,(f) 1s trivial if and only if

f 1s homotopic to a map f; such that le(Y) + Y and

fil(x - ¥) + X - Y are simple homotopy equivalences.

Cappell-Shaneson [C~31], [C-S2] and Hambleton [H] have

observed that since

a—
T
image(oy : [M,G/TOP] + Ln(ZG,mD c ker(Yf'ct)

ﬁ
Yf!cft(x) can be viewed as the primary obstruction to an

element x ¢ Ln(ZG,m) arising from surgery on closed

manifolds.

In this paper we compute the twisting diagram (0.1) where

£ : (ZH,04,1) + (ZG,q,,1),
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G 1is a finite 2-group, and Ln = Lﬁ . Our motivation is -

that we have used these results to compute cz : [M,G/TOP] =+

Lﬁ(,ZZG,m) (see [H1, [{T-W1, and [H-T-WJ).

Roughly speaking, we proceed as follows
(1) We show that the Twisting Dlagram (0.1) for f
decomposes into a sum of diagrams indexed by the
irreducible @-representations of G.

(11) We use quadratic Morita theory to construct an
isomorphism between each component diagram and
the twisting dlagrams assoclated to integral
versions of Examples 1. (a),(b),(e),(d) i.e.
maximal orders in divislon rings.

(111i) By using classical regults on quadratlc forms
over division rings and localization seguences

we are able to finish the calculation.

In Part I we carry out this program for the groups along
the top and bottom of the twisting dlagram (0.1). 1In Part II

we compute the actual diagrams.
This paper 1is a preliminary version of [H-T-W1 where we
give details, compute the twisting diagrams for other L-groups

in addition to LE, and give geometric applications.

We thank Tony Bak, Bill Dwyer, Chuck Giffen, Karl Kronstein,
Tb Madsen, Bob Oliver, Andrew Ranicki, Carl Riehm, and Richard

Swan for conversations which helped to clarify our thinklng.
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PART I: Computation of the LP_groups
Let G be a finite 2-group and H an index 2 subgroup.

In the oriented case, the groups Lﬁ(EG) have been
computed by Bak-Kolster [{X1], [K2], [B-K]l, Pardon [P]l, and
Carlson-Milgram [C-M]. These results are nicely summarized

by Theorem A in [H-M] where they give a decomposition of

LECZG) indexed by the irreducible Q-representation of G.
Besides extending their computations to the unoriented L-groups,
Lﬁ(%G,m) and the codimension 1 surgery groups LE(EG,&w,i),

we also have to overcome the following problem. All of the
above computations were based upon choosing a maximal involution

invariant order, MG which contains ZG. Unfortunately, it

is not always true that MG n QH 1is a maximal involutilon

invariant order in QH. (Bruce Magurn has observed that this
can happen even when G 1s the dilhedral group of order 8).
Thus it is not clear that the above computations and decom-
positlions are functorial and we have had to modify their
method somewhat. We have attempted to keep Part I fairly
self-contained, but we would like to emphasize that Part I

is based upon the work of the above authors and Wall's fun-
damental sequence of papers [W1] - [W81. 1In Section (2.5)

we try to clarify certain questilons involving quadratic

Morita theory.

§1. Basiec Definitions and Overview

(1.1) 1Intermediate L-group

The use of arithmetic squares forces us to use L-groups
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other than Lg . Thus we shall start by recalling the

relationships between the various L-groups.

A ring with antistructure (R,a,u) 1s an assoclative ring

R, an anti-automorphism a : R+ R and a unit u ¢ R such
that o2(a) = uaul for all a ¢ R, and such that a(u) = u
For any right R-module M, p*(m) = HomR(M,R) is the right

R-module where
(f » r)(m) = a{r) + £(m) where f ¢ D°M, m ¢ M, and r ¢ R.

Since inner automorphisms act trivially on K-theory, po
induces involutions on K, (R) and K (R) = coker(K,(Z) =+

Ki(R)) which we also denote by a.

If Y is an c-invariant subgroup of Ri(R), i=0 or 1,

then LY(R,a,u) denotes the standard L-group defined in [Cal,

[R3] §9, and [R1] p. 688.

If R=ZG and a  : 2 ngg + I ngw(g)g-l, then we get

the following geometric L-groups,

s {nab}CRl
Ln(EG,m) = L (ZG,a,,1) (see [W11)
h i1 .
Ln(ZG,w) =L, (ZG,a,,1) (see [Shl)
p k0
Ln(ZG,m) = Ln (ZG,04,1) (see [Mal, [P-R1)

If Y, ¥, «c K, (R), 1=0or 1l areboth a-invariant

subgroups, then we get the following Rothenberg exact

sequence (see [R3] 9.1)

-1
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Y Y.
(1.1.1) ... > L_2(R,a,u) + L H(R,a,u) » Hy(¥/Y,) > ...

where H:(YI/Y2) is the Tate cohomology group ﬁn(ZZ/Z,Yl/Y2)

associated to the action of Z/2 on Yl/Y2 via a.

Also,
K, (R) o:RO(R)
(1.1.2) L. (R,a,u) = L, (R,a,u)
If Y = RO, then
(1.1.3)

Y Y
La(Ry x Rys0y x 0pauy x Up) = Li(Ry,00,up) x Li(Ry,a,,u,),

je

and

Y Y
(1.1.4) Ln(Rl,al,ul) w Ln(Rz,az,uz) whenever (Rl,al,ul)
and (Rz,az,uz) are quadratic Morita equivalent

(see Section 2 for definition)

~

Since Ri(Rl x Ry) 4 Ri(Rl) x Ri(RZ) and since K, 1is

not a Morita invariant, (1.3) and (1.34) are false for most

Y :e.g. ¥Y=0c¢ RO . This problem 1s overcome by intro-

ducing the following variant L-groups.

If X is an a-invariant subgroup of Ki(R)’ then we

get L-groups, Lﬁ(R,a,u). (See [W3] for 1 =1 and [B-W]

for any 1 > 0).

It imageKo(E) ¢ X « KO(R), then

X X
(1.1.5) Ln(R,a,u) - Ln(R,a,u),
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where X = image of X 1in RO(R).

ir 1mageKl(Z) c X < Kl(R), then we get an exact
sequence
X X
(1.1.6) ... * L(R,a,u) + L (R,a,u) > Hg(imageKO(E)) F orem g

where X = image of X 1in kl(R).

Again we get Rothenberg sequences as in (1.1.1), and

(1.1.7) L, (R,a,u) = Lrl (R,a,u).
Furthermore,

(1.1.8)

Y.xY
i 1772

Y Y
n (Rl X R2;al x GZ’ul X u2) L3 Lnl(Rl,aljul) x Ln2(32,a2,u2)

and
Y $(Y)
(1.1.9) Ln(Rl,al,ul) ~ Ln (R2,a2,u2) whenever (Rl,al,ul)

and (Rz,az,u2) are quadratic Morita equivalent.
(¢ : KiLRl) + Ki(Rz) is the isomorphism induced by

the Morita equivalence)

(1.1.10) Convention: Henceforth Ln(R,a,u) will denote

(0154

K
LnlCR,a,u) + L 0(R,a,u).

Our first goal is to compute Lg(EG,a,u) for G any

finite 2-group and (o,u) any anti-structure.

First consider the following long exact sequence



(1.1.11)

el > Lg(EG,a,u) -+ Lg(zzze,a,u) ¥ Lg(zza + ZnG,a,u) * ...

(1.2) Computation of Lz£2§2G,a,u)

(1.2.1) Theorem: For any finite 2-group and any anti-

structure (a,u) on ﬁzG, we get

Z/2 if n
4] if n

0(2)

P, 2 P/ =
Ln(ZZG,a,u) +> Ln(Z/Z,id,l) 1(2)

Theorem 1l.2.1 follows from the following two results.

(1.2.2) Reduction Theorem: If R 1is a complete local ring

then for any 2-sided ideal I,

(1) Ko(R) > Ko(R/I), and

(11) Lﬁ(R,a,u) + Lﬁ(R/I,a,u), (assuming a(I) = TI)

Proof: See [W5]1, [B].

(1.2.3) Lemma: If G is a finite p-group, then
ker (Z/p)G@ » Z/p 1s nilpotent.

Proof: See [SEl, p. 57.
Notice (1.2.3) implies that kernel (Ezpe + (Z/p)G + Z/p)

is complete.

(1.3) Computation of LP(mg » AZ,G,a,u)

It is well known that

Q6 = mwA (see [S1] or [¥1)

¢!
where the product is taken over the set of isomorphism classes

of irreducible Q-representations. Each A¢ is a simple ring,
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and A¢ = a¢QG for some central idempotent a¢ which can not
be expresses as a sum of nontrivial central idempotents.
Since u2 is an inner automorphism a(a¢) is either a¢

or 2y (4 where a(¢) is another irreducible Q-representation.

In fact € Z[%JG (see [Y], p. 4) and A¢ = a¢(ﬂ[%]G) is

%
a ZZ[%]-maximal order in A¢ (see [Rel, p. 379). Restyic-
tion glves a decomposition of rings with anti-structure.

(1 3.23 (Z16,a,u) =

¢=g(¢)(A¢,a¢,u¢) x
The A¢ % Aa(¢) are called type GL factprs and make no

I (A, xA N ,u, x u ) .
p=a(d) $ a(d)? ¢xald)’ ¢ a()

contribution to any Wall group.

We prove the following result in Sectlon 2.

(1.3.2) Decomposition Theorem: For any finite 2-group G

and any anti-structure on ZG, we get the following

canonical lsomorphisms.

Iﬁ(ZG + ﬁzG,ann

14

Ln(ZZ[%]G + §,6,a,u)

3 3

; Ln(A¢ + A¢(2),a¢,u¢)
p=al¢)

K

(Recall that Ln denotes Ln > Ly

Consider the following Z[%]-algebras, where Cj is

a primitive EJ-th root of 1 and - denotes complex conjugation.



(1.3.3)

= BE

2) Ry = ZI3MCy,, + Tyl
3) Fy = BLFMZy,, - Tyuol
B) Hy = (:lifl) ® Ry_,, where
(i"zz;l)={z+ Zi + Z3 + Zk| 1 = -3i = k, 12=32=_1}

Remark: Each of these B[%]—algebras is a free E[%J—module

of rank 2V,

Now, consider the following anti-structures.

(2.3.4)

l) On PN, (Id,l), (",1)’ (T,l).! (_T-’l)

Id 1s the identity; - 1is complex conjugation;

or, equivalently, T is the fixed

Tlgey) = - 8 N-1

N+1

field of t; T has fixed field FN~1 .

2) On Ry, (Id,1), (7,1)

3) On FN’ (14,1), (-,1)
4) On Hys (al,l), (d,1) where al(i) =a(i) = 1
a;(J) = a(g) =
and a.| = Id, & = T,
L B0 IRN-2

In Section 2 we also prove the following result.



(1.3.5) Identification Theorem: If G 1s a finite 2-group,
and f(a,u) 1is any anti-structure on 7ZG ; then for any

ipreducible Q-representation ¢ with a{(4) = ¢, we get that
Lolhy > Rp(a)r%goty) 2 Tnlly ™ By(2)-PooTy)

1 :
where A¢ = a¢Z[§]G and (A¢,B¢,iy¢) is one of the rings

with anti-structure in list (1.3.4). Recall that

Ln(A¢sB¢sv¢) el Ln+2(A¢,B¢,“V¢) .

In Section 3 we compute Ln(A > A(2),B,v) for all of the
rings with anti-structure in List (1.3.4) and tabulate the
results in Table 1.

Theoretically we could then calculate Lgﬁ ZG,a,u), but we
restrict the anti-structure slightly at the start of Appendix I
in order to easily identify (A¢,B¢,v¢) on List (1.3.4) (see
Appendix I, part 1). In part 2 we settle the remaining questions

involved in using 1.1.11.

§2. Proofs of the Decomposition Theorem (13,2}

and of the Identiflcation Theorem (1.3.5)

(2.1) EBExcision in Arithmetic Squares

Suppose S 1s a multiplicative subset of a ring A.
Then S-YA 1s the locallzation of R away from S,

4 = 1im A/sA 1s the S—adic completion of A, anid
S¢S

(2.1.1) l l
gty + 5~

1s the arithmetic square associated to (A,S).
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(2.1.2) K-theory Excisjon Theorem: For any integer i,
- s, ~1a
Ky (A > A) = K, (8774 » 877R)

(2.1.3) Corollary: For any finite 2-group G and any

integer i,

Ki(ZG - z2G)

t

1 A

W

irred. @-rep.

(same notation as in (1.3))

(2.1.4) L-theory Excision Theorem: (See [R1]. Also [BI],
(B-wl, [C-M1, [P], and [W71.)

We assume that A in (2.1.1) is equipped with an anti-
structure (a,u) such that «1% is the identity. Localization

and completlon then induce anti-structures on the other rings
in (2.1.1). Let X c K,(S77A) and Y « K, (R) be a-invariant
subgroups. Let C = kernel of Ki(A) > Ki(S_lA)/X ® Ki(ﬁ)/Y,

and let I = image of X & Y - Ki(s‘lA) ® x,(4) » Ki(s‘lﬁ).

Then,
L2+Y(A = B 2 Pt > 570,

(2.1.5) Corollary: For any finite 2-group G and any anti-

structure (o,u} on ZG, letting X and Y be trivial we get

¢, (6) . K, )
LY (@ > Z,6,0,u) 2 Ln1+1(z[-2]:]a + §y6,0,u)

4

K
141, , 7
T Ly Ay~ Rypayatyatty)

¢
a(p)=¢
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= , 1 &
where Ci(‘G) = ker r(i(ZZG) + Ki(ZZ[sz) ® Ki(Q2G) and the

rest of the notation is the same as in (1.3).

Ci(G)

]
i -groups are the Ln—groups

If 1 =1, then the L

which were computed by Wall [W8].

c. (@)

Notice that if we can show that Ln0 (zZGg -+ 222G) -

Lﬁ(ZG + ﬁ@G), then (2.1.5) would imply the Decomposition

Theorem (1.3.2).

(2.2) Representation Theory for Finite 2—groups

Definition: A finite 2-group w 1is special 1f it has no

noncyclic, normal abelian subgroups.

(2.2.1) Proposition: A group w 1s special if and only if

it is one of the followlng groups

2N
(1) cyclic, Cy = ¢x | x° =1
e 1
(11) dihedral, Dy = x,y | x =y“ =1, yxy =x >, N> 3
ali-l o il
(111) semi-dihedral, 8Dy = <X,y |X =y° =1, yxy =
N-2
x2 —1>, N>3
N-1 5 2N--2
(iv) quaternionic, Qy = <X,¥ | x =1, y° =x §

yxy'1 = x"l>, N > 3.

Each specilal group w has a unique faithful, irreducible, Q-

representation ¢(mw).

For any irreducible @-representation of a group G

p : G~ GL(Vp), we let
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Dp = EndQG(Vp)'

Schur's lemma implles that Dp is a division ring.

(2.2.2) Theorem: For any irreducible Q-representation ¢ on
a finite 2-group G, there exists a subgroup H with normal

subgroup N such that

(1) H/N 1is special
(i1) 1If we pull v(H/N) back to H and then induce
up to G, we get ¢.

(111) D D where ¢ = Y(H/N).

¢ = "y
Proof: (See [F])

(2.2.3) Table

" Py ¢m)
Cy | Tyoy @ @
Dy | By-3 ® @
SDy | Fy_3 @ @

Thus the rings from list (1.3.3) are Z[%J-maximal orders

in the division rings D y Notice that the centers of

164
these division rings are precisely the fields which are sub-

fields of Q(CJ) for some J, namely fields of the form

Q(ci), elz, + ;i), and Q(ci - ci). (Recall L is a
primitive 29-th root of 1.)
(2.2.4) Veber's Theorem: Suppose K 1s a subfield of Q(CJ)

for some J. Let 0 be the ring of algebraic integers in



K, and let R = 0[3]. Then

(1) ¥/Q 1is unramified over all odd primes. Over 2,
1t is totally ramified, and the unique dyadic

prime d 1s principal.

(1i1) The ideal class group r{x) ~ RO(O) = RO(R) has

odd order

(iii) The narrow ideal class group

r¥(K) - (group of ideals)

principal ideals (x)
(such that x > 0 )
for all real places

also has odd order
Proof: For (ii), see Theorem 10.4 in [Wasl]. Class field
theory implies that if K = Q(;i + E;), and T¥*(K) does not

have odd order; then K has a quadratic entension E/K which

is unramified at all finite primes. But, then E@KQ(Ci)

would be an unramified, gquadratic extension of Q(Ci). Thus

(11) for K = Q(ci) implies (iii) for K = Q(Ei + Ei).

(2.2.5) Corollary: For any N, KO(PN), KO(RN), KO(EN), and

KO(HN) have odd order.

Proof: Notice that if R =T,, R or F, , then R = 0[11
— N N2 N 2
where 0 = ring of algebraic rings in a subfield of Q(Ci)
for some i. Since H is a maximal order in the division

N

algebra Hy ® @, (36.3) in [Rel implies that

Ko (Hy) = T*(alzy + Ty)).
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(2.3) gLinearz ~ Morita Theory: (see [Bass 1] and [Re] for

details).

Definition: A Morita equivalence between two rings A and

B 1is a U4-tuple (M,N,u,7) where M and N are bimodules

M and N

B A alg3 u : MOAN - B and Tt N@BM > A are

blmodule isomorphisms such that

t(n®m) n'"=n « u(m ® n'),
and

me t(n ® m')

u(m @ n) - m?'
for 2all n, n' € N, and

all m, m' ¢ M.

For any ring A, we let PA denote the category of

finitely generated projective right R-modules.

(2.3.1) Theorem: Assume (M,N,u,T) 1is a Morita equivalence

between A and B. Then, we get an equivalence of categories

and an isomorphism

Ki(A) @Ki(B) s

Furthermore, center{(A) = B - A - bimodule endomorphisms

of M = center(B).

Examples

(2.3.2) Derived Morita equivalence

Suppose M e 0b (PA) and A 1is a direct summand

of Mn for some n > 0, i.e. M 1s a progenerator. Then
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A and B = EndA(M) are Morita equivalent via (M,N =
HomA(M,A),u,T) where u{(m ® n) - m' =m * n(m*') and T 18

the evaluation map.

Ir ¢ : G+ GLn(Q) is a Q-irreducible representation of
a finite group G, then we let V¢ denote the simple module

of the simple component A¢ < QG. Thus A and the division

b

ring D¢ = EndA¢(V¢) are Morita equlvalent. Furthermore,

Ki(QG) * gxi(D¢).

(2.3.3) If R 1is a commutative ring, then a R-algebra A
is Azumaya if there is a R-algebra B and a progenerator
M of Py such that A8 B = Endp(M) as R-algebras. (See [K-01.)

If A is an Azumaya R-algebra, then A 1is central 1.e.
center A = R. Assume R 1s a Dedekind domaln with field of
fractions K. Then, whenever A 1s an Azumaya R-algebra,

A is also a R-maximal order in A@RK. Conversely, if A 1is
a R-maximal order in a simple K-algebra A with center R,
then A is Azumaya if and only if ﬁp - Mn(ﬁp) for all finite
prime ideals in R. (See [Rogl.)

Suppose ¢ : G * GL(V¢) is a irreducible Q-representation
of a finite group of order m. Then A =8

% ¢
Azumaya R¢—algebra where R¢ = center(A¢). (See [F], Corollaire

. EE%]G is an

1 of Prop. 8.1.)

Definition: TFor any commutative ring R, Br(R) is the set
of Morita eguivalence classes of Azumaya R-algebras. It

becomes an abelian group under tensor product over R.
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Suppose R 1s a Dedekind domain with quotient fileld K

a finite extension of @ or ap for some prime p.

(2.3.4) Theorem: Let Aj c AJ for j = 1,2 be R-maximal
orders in simple K-algebras AJ, J = 1,2. Then A1 and A2
are Morita equilvalent if and only if Al and A2 are Morita

equivalent.
Proof: See [Rel, Theorem (21.6).
(2.3.5) Corollary: The map Br(R) + Br(K) is a momomorphism.

(2.3.6) Theorem: Suppose that G 1s a finite 2-group.
Then, for any 1i,

Ki(‘ ZG +Z2G) + g Ki(A¢ + 34,(2) )

where ¢ runs over the lrreduclble ratlonal representations of
G and A¢ 1s one of the rings on list (1.3.3).

Proof: First apply corollary (2.1.3). The result follows from
(2.3.4) after consulting paragraph two of (2.3.2); (2.2.2) (111);
and Table 2.2.3.

(2.4) Proof of the Decomposition Theorem (1.3.2)

(2.4.1) Theorem (Swan): If G 1s a finite group, then
RO(ZZG) is a finite group.
Then (2.3.6), (2.2.5), and (1.2.2 (1)) imply that CO(ZZG) -

RO(ZZG) becomes an isomorphism when we localize at 2. A

Rothenberg sequence argument then implies that
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c.(7Za)
L0

~ p -
o zG - EEG) +> Ln(,ZG - EzG) 5

Thus (1.3.2) is a special case of (2.1.5).
(2.5) Quadratic Morita Theowry (Compare with [F-Mc] and [F-W1)

Definition: A quadratic Morita equivalence between two rings

with anti-structure (A,o,u) and (B,B,v) 1is given by a Morita
equivalence {(M,N,u,T) plus a B-A-bimodule isomorphism h : M + N
where we make N into a B-A bimodule using o and B. We

also require that

ar(h(mlu) ® m2) = T(h(mz) ® le)

for all m,,Mm, € M

(2.5.1) Theorem: A quadratic Morita equivalence between (A,a,u)

and (B,8,v) induces 1lsomorphisms

$ : Ki(A) > Ki(B), (equivariant with respect
to o, and By)
HO(K, (A)) = Hg(K;(B)),
and
Lﬁ(A,a,u) + Li(x)(B,B,v) where X 1is any

ag-invariant

subgroup of Ki(A).

(2.5.2) Derived Quadratic Morita Equivalence Theorem: Suppose
(A,a,u) 1is a ring with anti-structure and (M,N,p,t) 1is a

(linear) Morita equilvalence between A and B. Let R = center A =
center B. Assume h : M+ N 1s a right A-module isomorphism,
where we use o to make N into a right A-module. Then,
(i) B admits a unique antl-automorphism B such that
h becomes a B-A-bimodule isomorphism when we use

g to make N a left S-module. (8|R = a[R); and
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(11) there exists a unique unit v ¢ B such that
(M,N,u,t,h) is a quadratic Morita equivalence

between (A,a,u) and (B,B,v).

(2.5.3) Corollary: Suppose (A,a,u) 1is a ring with anti-
structure where A 1is a simple algebra over a fleld K. Let
V = simple right A-module and let D = the division algebra

EndA(V). Then (A,a,u) 1is quadratic Morita equivalent to

(D,B,v) for some anti-structure (B,v).
Proof: Since V and V% = HomA(V,A) are both simple right

A-modules, there exists a right A-module isomorphism h : V »+ v,

(2.5.4) corollary: Suppose (o,u) 1s an anti-structure on

QG for some finite group G. Then,
Ln(QG,u,u) > g Ln(D¢,B¢,v¢).

d=a(d)

(2.5.5) Definition: If (R,a,u) is a ring with anti-structure
and w 1is a unit in R, then the scaling of (o,u) by w

is the new anti-structure
(-a,u)w = (B:V)
where B(r) = wa(r)w © for all r ¢ R, and v = wa(w Lu.

For any R-module M, there exists an isomorphism

Bu; £+ (£¥ 1 x > we(x)).

DM -+ D
Thus we get an isomorphism

o i L (Rye,u) + L (R,(a,u)")

Alternatively, o can be gotten by applying (2.5.2) with
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Mp = R and h : R=+ HomR(R,R) = R the map that sends r to Irw

(2.5.6) Definition: Suppose R 1s 2 commutative ring with

involution Then Br(R,aol is the set of gquadratic Morita

aye
equivalence classes of rings with anti-structure (A,a,u), where

A 1s a Azumaya R-algebra and aIR = a5 - Br(R,ay) 1s an abelian

group under tensor product.

Warning: We shall see in (2.5.9) that the gquadratic analogue
of (2.3.4) is not true in general.
Let BrO(R,uo) be the kernel of the forgetful map

Br(R,uo) + Br(R).

Assume that R 1s a Dedekind domain with quotient field

K. Let 1 = the group of R-fractional ideals in K, and let

g : K* + 1 be the map that sends X e K* to the ideal (x).

By sending elements and fractional ideals to thelr images under

the map &4 K + K we get an action of Z/2 on K* and 1.
Warning: The map 1 + KO(R) which sends a fractional 1deal
to the underlying module [a] 1is not equivariant. Indeed,

o
[ao(a-l)] ~ [al 0= HomR(u,R) made into a right R-module via a4.

(2.5.7) Theorem: There exists an isomorphism

¥ 1 Bry(R,a,) ~ 10 (z/2,K* » 1)
U
{(x,a) e K* ® T |ag(x) = x™7,(x)a = ay(a)}

-1

Hyag(s™), (3)8ap(B) | (y,8) < X* @ 1)
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The map ¥ 1is defined as follows. Suppose (A,o,u)

represents an element in BrO(R,a ). Choose M so that

A= EndR(M). Let V = MORK and A = AGRK. as in (2.5.3) we

can choose a right A-module isomorphism h : VvV -+ v®  which

yields an anti-structure (B,v) on EndA(V). Notice that

K = EndA(V) and B = « Let ad(h) : V x V> K be the

e

adjoint of h : V + v* = Hom (V,K). Then ¥(A,a,u) is
represented by (v,a) where a 1s the fractional ideal
generated by h(M x M).

The map ¥ has the following interpretation. Assume h
is choosen so that a < R. Then the (linear) Morita equivalence
derived from M and the pairing h : M x M + a determines an

equivalence of categories Sesq(A,a,u) -+ Sesq(R,ao,v). But,

nonsingular forms are sent to #-valued modular forms.
The following result was suggested to us by Karoubi.

(2.5.8) Proposition: Any ring with anti-structure (A,a,u)

is quadratic Morita equivalent to (Mz(A),B,l) where

a b ald) a(b)u
8 at -1
¢ d u "afe) u aa)u

Proof: Let {el,ee} be the standard basis for M = A @ A

and {e;,e;} be the dual basis for N = M*. Then we let

h : M+ N be given by h(el) = ue; and h(e2) = e; and we
apply (2.5.2) to the derived Morita equivalence,
This implies that Br, (jR,aO) is isomorphic to BO(_R,ZZ/2)

in the sense of Frohlich-Wall [F-W]. Thus (2.5.7) is at least
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implicit in {F-W].

(2.5.9) Sample Calculations:

(1) R=K
If charK # 2, then Bry(K,1d) has two elements

which are represented by (K,ao,l) and (K,ao,-l).
Bry(K,aq) = (1) when o $ i@ or charkK = 2.

(11) R = finite extension of ﬁp .

Bry(R,1d) 5 Br_(K,1d) - {+1}

If o $ 14, we let r De the fixed subring of a, . Then,
BrO(R,ao) = (1), when R 1is inert over T, and
Bro(R,ao) nas order 2 when R 1is ramified over I.

Notice that Br(R,aO) + Br(K,aO) is not an injectlon.

In cases (1ii) and (iv) we let R = 0(2) where ¢ 1s

a ring of algebralc integers and I ig a set of prime ideals

in 0, e.g. the center of the rings in List (1.3.3).
(111) Bry(R,1d) = ,R" @ r/1r°

where T = coker(x* + 1), and 23* = {X ¢ R*l x2 = 1}.

The isomorphism comes from the following braid
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which is Induced by the following exact sequence of Z %Z/2 -

modules

1+ R¥ >+ K¥>71%>p 1

Remark: The localization sequence (see [R1], §4.2) implies

that
Lg(R,id,l) ~ coker(LP(K,1d,1) ~» f Lg(Rp + R .14,1)) .

Similarly, if (A,a,u) represents an element

]

a e I/T° < Bry(R,1d) and A = A® K, then LE(A,0,u) »

R

+

coker(LP(A,1d,1) + Lg(ﬁp ﬁp,id,l)), where LD(A,1d,1) »
P

L5(K,1d,1) and where ISR, > A L,1e,1) 2 LS‘(Rp * R ,1d,1).

But 1t 1s not true in general that L(R,1d,1) » LE(A,a,u).

For example 1f a is nontrivial and % e R, then

order Lg(R,id,l) = 2 x order L?(A,a,u).

(iv) Assume ay ¥ 1d.

Case 1: K 1s unramified over the fixed field of ao and

L = the set of all prime ideals in 0. Then BrOCR,aO) has

order 2, but the map BrO(R,ao) + BrO(K,aO) ® ﬂBro(Rp,a is

)
5 0

trivial. Furthermore, if (A,0,u) represents the nontrivial

element in Bro(R,ao). Then
LP(R,05,1) # T5(A,a,u).

Case 2: Otherwise,
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BrO(R,aO) > 8 BrO(Rp,ao),

where we can sum all finite primes p in I which are

ramified over the fixed field of oy

These results are proven by using the isomorphism
~0 * ~0 ~ % ~
H(Z/2; K* + 1) = H(Z/2; 7 R x m™ KZ x 7 K

*
oz P pex P v
arch

¥ > e(x)),

where e(K) 1is the idele class group of K.

Remark: If R = 0, then case (iv) is related to Connor's

book [C]. In fact,

AO ao
H (Z/2; K* » 1) ~ Gen(K/K ")

(see chap. I in [C1), and if ¥(A,a,u) = [(x,a2)], then
Lg(A,u,u) z Hx(a), where Hx(a) is the Witt group of x-

symmetric, a-modular forms studied in chap. IV of [C1.

r> N
[}

-

(2.6) Proof of the Tdentification Theorem (1.3.5)

Theorem (1.3.5) will follow from (2.5.1) (or rather its
relative version) 1if we can prove that (A¢,a¢,u¢) is quadratic
" Morita equivalent to (A¢,B¢,tl) where (A¢,B¢,l) is one of the
rings with anti-structure in List (1.3.4%)

From the proof of Theorem (2.3.6), we know that A¢ is
linearly Morita equivalent to PN, FN, RN, or HN for some N. Let
R denote the center of A¢. Then'(A¢,a¢,u¢) € Br(R,aO) for
some ag.

The proof divides into three cases.

1) D¢ is commutative, o5 = I4.

Then (A¢,a¢,u¢) € Bro(R,Id). From (2.5.9) (1ii) and
(2.2.4) (11), BrO(R,IdJ = @/27Z and from (2.5.9) (i) we see
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that (R,Id,1) and (R,Id,-1) are the two elements.

o= Id.

The calculation in 1) shows that (HN,al,l) and (H

2) D¢ is non-commutative, a
N»%5-1)
are the two distinct elements in Br(R,Id) which map to [Hyl e
Br(R). From (2.3.6) we know that A¢ is linearly Morita equiv-
alent to HN’ so done.
3) ap # Id.

First notice that R with each non-trivial involution
occurs on List (1.3.4). From (2.2.4) (1) and (2.5.9) (iv) case 2,
we see Bry(R,ay) = (1). Using (2.3.6) we are finished.
Remark: Notice that if R = PN’ FN’ or RN’ then, for any Qg s

Br(R,ao) - Br(K,aO) is one to one.

§3. Localizatlion Sequence

The goal of this seetion is to compute Ln(A + 32,6,1)

where A 1is any of the rings from List (1.3.3) and B8 1is

0c<K
any (anti)-involution on A. Recall that L~ denotes L e

n

Henceforth, we shall suppress writing the 1 in (8,1).
The results are summarized in Table 1.

(3.1) General Background

Suppose K 1s an algebraic number field with ring of algebraic

integers 0. Let R = 0[%]; D = central, simple, K-division
algebra; A = R-maximal order in D; and B8 any (anti)-

involution of A. We assume KB(A) has odd order.

Consider the followlng arithmetic square



A+ D
+ %
A+D.
Then,
(3.1.1)
L (4 > D,8) = L (& » §,8) (by L-theory Excision Theorem (2.1.4))

e

® Ln(Kp > ,8) (by 4.1.2 and 4.1.5 in [R1]),

where we sum over all maximal ideals o in R

such that B(p) = p.

(3.1.2) Local Quadratic Morita Theorem: Suppose p 1is a
maximal ideal in R such that B8(p) = p and such that
D, =~ Mk(Kp) for some K.

If B'R = 14, we assume that (A,8,1) ¢ Br(R,id)

maps to the trivial element in Br(K,1d) ~ {+1},
where ¥ 1is the algebraic closure of K.

If BIR 4+ 1d, we assume that p 1s unramified
over the fixed field for B, .

Then,

Ln(Ap - Dp,B) > Ln(Rp + K ,B)

Proof: Apply (2.5.1) and (2.5.9) (ii).

(3.1.3) Divissage Theorem: Suppose 9 is a maximal ideal in

R such that B(p) = p. If B|R $ i1d, we also assume that

p 1is unramified over the fixed fleld for BlK . Then, since

=

€ Rp, we get
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Ln(Rp - Kp,B) > Ln(kp,B),

where kp is the residue field R/p.

Proof: See 4.2.1 in [R1].

If (A,B) satisfies the assumptions in (3.1.2) and (3.1.3)

then we get the following localization diagram with exact rows

and columns

(3.1.4)

»
. .

¥ + ¥
v ~
A ~ p
Li+1(A+A2,B)+L1(D,B)+Li(A2,B)$$L1(kp,8)+Li(A+A2,B)+...

| ! ! 1

_ P -
Ly (8,8) L,(D,8) ———— 8Pk ,8)+L, ;(A,8) ...

O-map [
v

&
» a0 %

-~

Since % € Az, we get that 32 52 . If 0 contains

a unique dyadiec prime, then 52 is a simple ring. Recall
that in @& L?(kp,ﬁ) we are summing over the set of maximal

ldeals in R such that B(p) = p. Notlce that this is the
same as summing over the B-invariant, N.D. maximal ideals in

0 (where N.D. stands for nondyadic).

We shall compute Ly(A + EZ,B) by computing the map ¥.

Notice that the domailn ang range of ¢ 1is expressed in terms

of L-groups of semi-simple rings.

3>
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(3.1.5) Semi-simple Theorem: If A 1is a semi-simple ring,

then L§1+1(A’B) = Q0 for any involutlon B8.

Proof: See [R2].

(3.1.6) Reduction Theorem: Li(ﬁp,B) = Li(kp,B), where kp
For any abelian group G, ,0 = {g ¢ G|g2 = 1}.

(3.2) Type O-Commutative Case: (FN,id), (RN,id), (FN,id),

We assume B = i1d which we suppress writing.

Then for any field K with chark $ 2, LE(K) = W(K),

the classical Witt ring of symmetric bilinear pairings over
K (see [L1, [M-H1, [0'M], and [W4], p. 135). Multiplication
in W(K) comes from the tensor product of pairings. Let

T(X) = kernel r : W(K) > Z/2 where r 1s the rank map.

The group Lg(K) ~ (1) because any skew-symmetric non-

singular pairing b has a symplectic basis, i.e. Db 1ls

hyperbolic (see [M-HI, 3.5).
The Rothenberg sequence plus (3.1.5) then imply that

3,251,00 1)

{11}

*
Ln(K) ~ 0,0,,K ,I(K) for n

(3.2.1) Examples

(1) If k 1is a finite fleld with chark f 2, then

disc: I(k) = k*/k*2 has order 2.

A

(11 K th [K ,0.1 =%, th
) If Kp/Qp wl r p’Qp] , en

=R _/p.
p/o
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dise : I(R )/To(R ) + ke R#2,
p pT ~ Tp"p ?

Hasse-Witt: Iz(ﬁp) %,

A ~ ~ p
then the map LO(Kp) * LO(..RD - Kp) + Lo(kp), sends

Ii(ﬁp) onto Ii_l(,kp) (see [M-g1, IV, 1.4). Thus

Ii(kp) > kg/kgz can be identified with the Hasse-Witt
invariant. We also get the following exact sequence

2V
> 7Z/2 + 1

I(Kp)/I (_Kp) ” Lo(kp)/I(,kp),

where 6p is the 1ntegral closure of ﬁZp in ﬁp .

For any o, 0% 5 u(ﬁ ) x Z

3 . ﬁ (see [S2], XIV, §4),

where u(ﬁp) = roots of unity, Thus

Z/j2 if p 41is N.D.
~ A2
L V{11 e

Z/2 211

if p 1is dyadic
(111) I(e¢) ~ (0) and sig : I(R) + 2% .

(iv) If X/@ with [K,Q]l = r +2r'2 where r is

1 1

the number of embeddings of K i1into IR, then
. 2 * /%2
disc : I(K)/IT(K) = K#/K¥",
2 3
Hasse-Witt: IT(K)/I-(X) = 2Br(K), and

. 130 3 @ T3 1
sig : I°(K) + & I°(K,) = (8Z) *, where v
v

varies over the real embeddings of K.

Br(R,) ~ {#1}. If o is N.D.,
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Suppose K is a field on 2.2.3 , 0 1is the ring of

algebraic integers in K, and R = 0[%]. Since 0 has a

unique prime over 2, ﬁ2 is a field and the Localization

sequence (3.1.4) dimplies that L3(R + ﬁz) and L2(R + ﬁz)

are trivial. We also get the following commutative diagram

with exact rows and columns.

(3.2.2)
0 0
¢ v ¥
2 2 o A
I(K) — I (K2) o8 I(k)
v " +Pyp P
~ "~ p ~
0 -+ Ll(R - R2) + LO(K) + LO(K2) ® g Lo(kp) + LO(R > R2) + 0
l N.D.
" ¥

1 "~
K#/K#S ¥ K§/K*2‘2 o ® /2
0

l lN’.D.

0 0

The snake lemma then ylelds the following exact sequence
(3.2.3)

A 9 a
0 > kery, - Ll(R - R2) + keru, > cokery, - LO(R -> R2) + cokery, - 0

Computation of ylz

If 1 = group of O-fractional ldeals in K and T =

ideal class group, then we get the following exact sequence

1+ 0% >K*+>T1>T>1

Since T has odd order by Weber's Theorem (2.2.4),



86

we get the followlng short exact sequence

i
1 > O%/0%° - K%/K%° 5 1/1°

Since any ¢-fractlonal ideal can be expressed uniquely
as a product of prime 1ldeals, we can identlfy 1 wlth the
free abelian group generated by the maximal ideals in 0.

Thus,

1712 » @ m/2.

pecl

Consider the following commutative brald of exact sequences

(3.2.4)

\v & 1d
\/ \/ ZZ/E A G E/z

(3.2.6) Lemma: Assume L/ﬁ),p is a finite extension and p

is odd. Then for any element x e L¥, L{(¥x)/L is unramified

if and only if vp(x) is even, where vy L*¥ » Z is the

valuation map.

Proof: Recall that the extension L(¥X)/L 1s determined by

X, the image of x in L*/L*¥ . Since vp(x) is even,

X ¢ A%/A%%; ywhere A 1s the Integral closure of Z, in L.
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Since p 1s o0d4, A‘*/A“‘2 + 2*/2*2 ~ Z/2 , where 2 = residue

field. Thus we get that either X = 1 and L/x 1s a product

of two flelds i.e. split or &(¥X)/% 1s quadratic and L(/x)/L

is inert.

(3.2.7) Corollary: Kernel(%l) - Kernel(wl) = (1)

Proof: Suppose x ¢ 0% represents a nontrivial element b3
in the kernel of &1 . Since §,(x) =1, K/xX/K 1is split
over the unique dyadic prime in K. Since X ¢ 0%, vp(x) =0

for all prime ideals in 0, and (3.2.6) 1implies that Kvx/K

is split at all N.D. primes. Global class field theory implies

that Gal(XKvX/K) - Z/2 1s a quotient group of r*(X) the

narrow class group. But this is impossible by Weber's Theorem

(2.2.4).

Let [X,Q) = ry + 2r2, where ry is the number of

embeddings of K 1into 1R. Then,

rl+r2—1
0% = (k) @ Z (Dirichlet Unit Theorem)
and
N " . r1+2r2
og = uwk,) & Z, (see [Sel, XIV, §4, Prop. 10)

- r2+l
Thus coker wl ~ coker wl = (Z/2) ;

Computation of ¥,

Recall the reciprocity sequence (see [C-FIl).

A . . R
1 + Br(K) + & Br(X ) @ @ Br(K ) »@/Z + 1
o} v
all real
o} v
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where R vrestricted to Br(ﬁp) is an isomorphism for any

p and R restricted to Br(ﬁv) maps isomorphically onto

2Z/7Z. Thus we get the following commutative diagram.

2 3 q’2 2.4 A
1+ I(K)/I’(K) ~ I (Kz) ® 9 I(kp) ® 8 Br(Kv) + Z/2 + 1

N | ! I

1+ Br(k) ———— & .Br(R )@ @ Br(K ) —— Z/2 » 1
2 2 o) v
all v
p

Case 1: r, = 0 1.e. R = RN with N = ry -

Then,

coker Y, = 0, LO(R + ﬁz) > Z/2,

and we get the following commutatlive diagram with exact rows

and columns
1 1
¢ +

1l1— IB(K)-———+ ker wz + ker ¢2/13(K) + 1

R | !

1+ 0 13R) » 0 TR ) » 8 TR )/13R) - @ Br(R) » 1

: T :

Z/2 = zZ/2

+ +

1 1
~ rl

Thus ker ¥, 2 Ll(R > R2) w B T

Case 2: r, =0 31.e. R =T or F

1 N with N = 2r

N? 2"

~

Then, ker ¥, > L;(R* R,) 2 0, and we get the following

diagran



/2

2 A ~ ~x I\*2
1— 11{K2)——+ LO(K2)-———+ K21K2 -1
1 + coker ¥, *+ Ly(R ~ ﬁz) + coker ¥, — 1
+ ¥

case 2(a): R = P2r2 1 1

Then Theorem 2.29 in [L] implies the top sequence splits.
Since K;/K§2 + coker *1 splits, we can conclude the bottom
sequence also splits. Thus,

_ ry+2
Ly (T ) ~ Z/2

> T
2P2 2r2(2)
Case 2(b): R ~ F2r2 "
Then Theorem 2.29 in [L] implies the top sequence does

not split. Thus,

r

- 2

L. (F + F ) ~ /2 ® Z/4.
0 2r2 2r2C2) =

(3.3) Type U-Commutative Case: (FN,—), (PN,T), (PN,?), (RN,T),

(.FN’-) .

If B8 1is nontrivial, BrO(K,B) ~ (1). Thus (K,B,1)

and (K,B,-1) are quadratlic Morita equivalent and Li(K,B) +>

Ly,»(K;8) for any 1. For any field K, LE(K,B) = Wg(K) the

classical Witt ring of hermitian pairings over K (see [C] and

(W], p. 135). Again, let IB(K) = kernel r : WB(K) + /2,

where r 1s the rank map.
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The Rothenberg sequence plus (3.1.5) imply that Ln(K,B) ~

O,IS(K) for n = 1,0(2).

(3.3.1) Examples

(1) If x 1is a finite field, then IB(k) ~ (1).

(11) If ﬁp is a finite extension of ap, then

. A ‘A* o A* A
disc: I (Kp) + FpO/NK /6 Kp, where Fpo is the
P po

fixed field for B. Local class field theory ([S21)

implies that ¥ /Nsp ,» R* . gal(R /P . Z/2.
p po/ Kp/Fp ;& C p/ po) ~ Z/

Q
It ﬁp/ﬁp is unramified, then the Divissage Theorem (3.1.3)
0

implies that
Z 3 7 p .
in(xp,s) * Lgi(op - Kp,B) + in(kp,B) + Z/2,

where 6p is the integral closure of ﬁp in ﬁp

(1ii1) The signature map yields an lsomorphlsm

sig : I_(C) ~ 2Z

(iv) If K/@ with ([K,Q] = r, + 2r,, where is the

1
number of embeddings of K into 1R; then

. 2
disc: IB(K)/IB(K) + F*/NK/FK*,

where F 1is the fixed field for 8. If [F,Q] =

89 + s, where Sq is the number of embeddings

of K into 1R, then
i

i
1 2

L]

sig : I2(K) 5 @ Io(X. ) + nz)
* 1g ottty
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where we sum over conjugate pairs of embeddings

v : K+ ¢ such that v(F) ¢ R, but v(K) ¢ R,

i.e. the ramified archimedian places

for K/F.
Suppose K < Q(Cj) for some Jj, ¢ 1is the ring of integers

in K, and R = 0[%]. Then we get the following commutative

diagram with exact rows and columns. (Recall that K/F 1is

unramified over N.D. primes.)

(3.3.2) , 1
+ +
2 — T2
IB(K) = IB(K)

| l

A ~ p A
1—>L21+l(_R+R2,B)+L21(K,B)+L21(_K2,B) & B(p?=p L21(kp,8)->L21(R+Rz,s)+1
R s ]
1— ker p.—> FR/NK* 1+ F2/NE% @ @ F* /NK* —— coker y;— 1

1 2 2 Po p 1

l l

1 1

Global Class Field Theory (see [C-F]) yields the following

short exact sequence

(3.3.3)

R
1 > F*/NK* - & FP* /Nf{; ® 0 ﬁ; /NK¥ > Z/2 + 0

glp)=p PO v Y0

where v varies over the ramified archimedian places for K/F.

Furthermore, R becomes an isomorphism when restricted to

He
p

/NR® for any p (N.D. or dyadie) or #* /NK* for any v.
0 p vy v

Type UL: ry = 0 and s, = 0, 1i.e. K 1s totally nonreal

))

and F 1s totally real. (;Crzrz,-) or (_F2r2,—



Then wl 1s onto, and

Ly, (R + ﬁz,B} ~ coker ¥, ~ (0).

We also get the following commutative dlagram with exact

rows and columns. 1 1
+ ¥

2 . o
1= I(K) —* Ly, (R > Ry,8) — ker ¢ ~ 1

» | |

2 ~ > %
1— & I; (K.)— @& L,, (X ,B) - ® F* /NK¥ + 1
arch. B v arch. 21y Vo ¥
unram. unram. 1
B e e
/2 /2
! 4
a T 1 1
Thus L,,.,(R » Rys8) ~ Z ©.

Type UII: Otherwise, ((Ty,t), (rN,?), or (Ry,T)). Then

A A
Lyy1(R ~+ R,,B) = 0 and Loy (R + H,,8) * Z/2.

(3.4) Type 9 - Noncommutative: (Hy,0;,1)

Let D = HN ® Q. Then D 1s a quaternionic division

ring over X = Q(zy + Eﬁ). If p 1s a N.D. prime, then

5p ~ M2(kp). Furthermore, for any real embedding v of K,

[
[1%]
‘-r
o
4]
]
o]

D_ 1is a division ring. If N D, 1s a division

ring; but if N > 2, then 52 Mz(ﬁa).

The {anti) involution @, 1s such that allK = id and

(D,al,l) e Br(K,id) maps to the trivial element in

Br(X,1d) ~ {+1}.
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Then Lg(D,al) is the c¢lassical Witt group of Hermlitian

pairings over (D,al), i.e. what Wall calls Type O and

D;
LS(D,al) is the classical Witt group of skew-Hermitian palrings
over (D,al), i.e. what Wall calls type Spp. For background

see [W4], p. 135 and [K].

Examples:

(1) 1f N =2, then L (By,a;) = 0,0,0, d4/@8° for

n =z 3,2,1,0(4).

(1i) Por any real embedding v of K,
L (B ,e) = 0 ,2%,0,0 for n = 3,2,1,0(4).

(11i) For any 1, L21+1(D,u1) = 0 (apply the Semi-

simple Theorem (3.1.5) and the Rothenberg sequence).
. N=-2
We also get L,(D,a;) 2 3 L,(D,a,) ~ (22) ;
The discriminate yields an onto map
5 Foad .
ise: LO(D,al) > K /K*¥°, where

KT = {x e K¥[v(x) « RY rfor all real embeddings v}.

Let I2(D) = ker disc, and let IBCD) be the kernel of

the onto map
I,(D) » 8 I*(R) ~ & Z/2

where we sum over all finite primes p (dyadlc or N.D.) such
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From (3.1.4) we get the following exact sequence
(3.4.1)

~ ‘p ~ p

When 1 = 2 we get,

~ 2N—2

Ly (Hy > Hyeoy,aq) = (0.

Cage 1: (N = 2) Then, when 1 =0, (3.4.,1) yields the following

commutative diagram with exact rows and columns

(3.4.2) 1 1
¥ ¥
2,4
D) ——— Q
I,(D) —— QN?D.I («np)

| l

A ¥
~ p ~
1+L1(H2+H2(2),al)+LO(D,al)+LO(D2,al)ONGD LO(IFp)+L0(H2+H(2),al)+1

I ! | h

—

245/ e e

1 —+ ker $1-——+ Q+/Q
N.D.

Z/2 —— coker Jl——» 1

+
1

Case 2: (N > 2) Then D, ~ M,(K,), and Ly(Dy,0,) ~ Li(K2).

When 1 = 0, (3.4.1) yields the following commutative diagram

with exact rows and columns



(3.4.3) 1
! "
I,()— 12(122)0 o 12(R)
K* N.D. P
2
Y ! |

K +H -+ K p <] A e
0°L) (Ry)-L) (BB 5y 52) Lo(D’“l)"’Lo(Kz’“l)"N‘fD.Lo(kp) Lo (HyHy 2y 2% )70

S !l

v _
Kt /K2 i K;/K;ZO ® 2/2—— coker §;— 0
N.D.

! |

1 1

Consider the following commutative braid of exact

sequences (compare with (3.2.4)).

(3.4.4)
A N-2
® K3/K*2 . /22
/ v ' g
,///ZK*/K*E v coker El
1
K+/K*2\/ 1‘(3/1‘{32 @ Z/2\/\‘ z/2 (r, = 0)

Since (3.2.7) implies that v, 1Iis injective, we get that
Wl is also injective. Also, in both Case 1 and Case 2, we get

~ = aN-249
LOQH2 > H(Z),a) ~ coker wl ~ /2 . In Case 1, we get that

Ll(H2 -+ H2(2),a) . 0. In Case 2, we get the following short

exact sequence

(3.4.6) 1~ 2K* + Ll(HN > HH(Z)’G) -+ IBCK) + 1 (N > 2).

l

oN—2. 5
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In Part II, (4.5.6) we show that a twisting braid argument

implies that this sequence splits.

(3.5) Type uy - Noncommutatiye Case (HN,&), N>2

Again, let D = HZ 8 Q with center K. Since alx £ 14,

Bro(K,a) ~ (1) (see (2.5.9) (1)) and L,(D,8) = (D,&).

Liso

Furthermore, Lgi(D,&) is the classical Witt group of Hermitian

pairings over (D,d), i.e. what Wall calls Type Uy . For

background see [W4], p. 135.

~

For any 1, L21+1(D,a) = 0 (apply the Semi-simple

Theorem (3.1.1) and the Rothenberg sequence). The discriminate

map yields an ilsomorphism

disc: in(D,a) + F /F N, pK¥,

F

where F = fixed fileld for &[K and

F' = {x « F*[w(x) > 0 for all real embeddings w of F}.

(3.5.1) Lemma: ¢ : FI/F a N, K¥ > F¥/N_, K¥ 1s an

K/F K/F

isomorphism.

Proof: Clearly ¢ 1s injective and the cokernel of $ 1is

isomerphic to the cokernel of

N
k* _E/F px o pr/pt,

Consider the following commutative diagram
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K*—IBEL ¥
| |

< pH/FT

R
@ K*/Kk' 2 ® Fr/FT
V/ v W w
v w
real real

The Weak Approximation Theorem (see [C-F1) implies that Sg
and S are isomorphisms. Since K and F are both totally

real, N 1is onto.

We then get the following localization sequence

o ~ ‘P L A P ~ ~ A~
0'+L21+1(A-P-A2,G)+L21(D)+L21(K2,0.)9A & L2i(kp’a)+L2i(A+A2’a)+o

) 11 w ll alg;f]);p ll

0 — ker Y.— F*/NK*——]:F?'*/Nﬁ*ﬂ)Qﬁ‘* /NR* ———— coker §.,—*0
1 2 2 Py p 1

Since both F and K are totally real, (3.3.3) implies that

L21+1(A + Az,a) = 0, and L21(A -+ A2,a) ~ Z/2.

(3.6) Summary: Let 4 =Ty, Fys Ry, or Hy, R = center of A,

K = the quotient field for R, and K = the algebrailc closure
of K. Suppose (a,u) 1s an anti-structure on 4. Let F
be the quotient field for r, where I is the fixed ring

for alR.

Definition: Assume ulR = id. Then

0 1f (a,u) maps to the trivial element in

(a,u) has type Br(K,1d),

Sp \ otherwlse



Assume a]R $ id. Then

UI if X is fake i.e. has no real places and F

(a,u) has type is totally real,

UITI {otherwlse

By combining (2.6) with the computations in this chapter

we get the following result.

(3.6.1) Theorem: Assume (a,u) 1is any anti-structure on

A =T or H

N> Fyo By N

If aIR = id, then L,(a » 82,a,u) 1s determined by A

and the type of (a,u). Furthermore, if (a,u) has type 0 and

(at,u') has type S then L,(a » Ez,a,u) * Ly, (8 > Ez,a',u').

p,
Ir GIR + 1d, then Li(A + Ka,a,u) is determined by just

the type of (a,u). Thus, there exist the following lsomorphisms.

UI: Li(PN,-,l)

X3

Li(FN,-,l)

¥

ULL: L,(Ty,7,1) 2 Ll(PN,?,l) > Li(RN,T,l) - Li(HN,a,l).

Furthermore, Li(A,a,u) > Li+2(A,a,u).

PART II: Maps Between L—§rougs

§4, Basic definitions for transfers

and twisted quadratic extensions

(4.1) Transfer maps in Algebraic K-Theory

Suppese £ : R+ S 1s any ring homomerphism. Then we

get the "push forward"map
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£, : X (R) » K, (8); M~ MLS.

If the map f makes S 1into a finitely generated, projective
right R-module map, then pestriction of scalers induces a

transfer map
!
£~ 3 Kn(S) + K (R).
!

If S8 is a progenerator as a right R-module, then f° also
has the following alternative description. Let

T(f ) : S~ EndR(S)
be the map given by left-multiplication. Then the Morita

equivalence derived from S viewed as a right R-module yields

an isomorphism ¢ : K R - KnEndR(S) such that the following

diagram commutes

el
Kn(S)——+ Kn(R)

$
(4.1.1) T(f{?\\\s Ki(EndR(S))

Ir RSS is isomorphic to RHom(,S,R)S, then we also get

that the following diagram commutes

Iy
K (R) — K, (8)

(4.1.2) & [ 7(r)"

Kn(EndR(S))

(4.1.3) Examples:

(1) If A : R~ R x R 1is the diagonal map, then T(A)

can be identified with the map R x R + M;(R) which

sends (rl,rz) to
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(1i) Suppose f : K+ D 1s the inclusion map of a

maximal subfield in a division ring where

F = center(D) and me = {D,F]1. Then T(f)
can be identified with the map D » D8 K - M (X).

(4.2) Relative (linear) Morita Theory

Suppose M 1s a progenerator for PR - Let R, = EndR(M)

and §, = Ends(MsRS). Then we get the following commutative

diagrams
(4.2.1)
£, o!
Kn(R)-————->- Kn(S) K,(8) — Kn(R)
¢ ¢
2 \JY 2 ¢M@Rs 2 M@ S 2 M
!
1! -1
Kn(Rl) —_— Kn(Sl) Kn(sl)——~—-+ Kn(Rl)

where fl : Rl > Sl is given by tensoring with ls, and the

maps ¢M and ¢M@ g come from derived Morita equivalences.
R

(4.2.2) Examples:

Suppose H 1s an index 2 subgroup of a finite 2-group

G. Then t, the nontrivial element in G/H acts on {ap} =
the set of primitive central idempotents in H. Furthermore,
the map QH » QG decomposes as a product of maps

Case 1: apQH - apQG (for t(p) = p), and

Case 2: apQH % at(p)QH > (ap + at(p)) + Q¢ (for t(p) ¥ p)
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For any p we let Vp be the simple module for a QH.

In Case 1 we let M Dbe Vp, and in Case 2 we let M be

Vp x Vt(p) . In both cases we get that fl : Ry, » 8

1 is

12
either one of the following maps or T applied to one of the

following maps
(a) F < K, where F and K are subfields of Q(zy)
for some N; and K 1s a guadratic extension of F.

(b) K~ Dy = (~411L:£———), where K 1is either Q(CN)

gy + Ty)
(e) Dy > Dyyy

or

(d) A : A+ A x A, where A 1is elther a subfield of

Q(zy) or (———:;4:%7—) for some N,
Qzy + Ty)

(Compare with Example 1 in the Introduction.)
Thus the problem of computing

£, ¢+ K () > K (26) and £’ : K (Q6) > K (@)

*

can be reduced to the problem of computing the push forward
and transfer maps assoclilated to the maps in (a), (b), (c),

and (d4).

(4.3) Transfer maps in L-Theory

Suppose f : (R,ao,u) + (S,a,u) is a map of rings with
anti-structure. Then we get the "push forward" map

£, Ln(R,ao,u) + Ln(S,a,u)
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(4.3.1) Definition: A trace for f is a map X : S+ R

such that

(1) X 1s a right R-linear map where we use f to

make S a right R-module.
(11) X(a(s)) = a X(s) for all s e S.

(111) 1 A% . 5 x S+ R sends (sq,s,) to x{a(s.)s,),
1287 1752

then ad(le) : 8+ HomR(,S,R) is onto.

and

(iv) S 1is a finitely-generated projective right

R-module.

Notice that a choice of trace X for f (assuming one
exists) determines a functor
Sesq(S,a,u) ~ Sesq(R,aO,u); (b : NxN=+S)+(X+*Db:Nx N=+R),
and a transfer map
X

£ Ln(S,a,u) - Ln(R,aO,u)

(4.3.2) Example: Suppose f : (ZH,e ,1) + (ZG,%,,1) 1is

w’
induced by an inclusion of groups H ¢ G. The Z-linear map

X : ZG + ZH such that

g if g ¢ H
X(g) =
0 1if g e G -H

is a trace. Furthermore, the induced transfer map 1s the same

as the geometric transfer defined using covering spaces.
Consider the map T( f) : S » EndR(S). By the Derived

Quadratic Morita Equivalence Theorem (2.5.2) we get that

ad(xx) determines an anti-structure (8,v) on EndR(S),
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such that (R,a,,u) and (EndRCS),B,v) are quadratic Morita

equivalent.

(4.3.3) Proposition: We get a map of rings with anti-structure
T(fr) : (S,a,u) » (EndR(S),B,v),

and the following diagram commutes

X
f
L (S,a,ul—— L_(R,qy,u)

R
T(f)!\j Ln(EndR(S) > B:V)

(4.Y4) Twisted quadratic extensions

Recall that in the Introduction we consldered the notion

of a twisted quadratic extension.

f: R+ Rp[/E] = S, with Galois automorphism v.
Notice that the examples in (4.2.2) can all be viewed as
twisted gquadratic extenslons. We are particularly interested

in the following examples where we pass to Z[%]—maximal orders.
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(4.4.1) List: (see (1.3.5) for notation)

f : R~ Rp[/al P t = vya
Ry-1 ™ By Td | Tyup * Ty
Tyaa > Ty R S P
Fyo1 * Ty 1d i
Ry y > Ty Id 1
Fy-1” Fx Ia | Tyep < Fnel
;i $ rN—l -+ HN’ where - J
£,(1) =1 ana £_(1) = k
£ : FN-l + HN’ where - 3
£(Ty,q = Syep) = KCL = Zy)
Hy_, ~ Hy Id gy * Ty
d : A+ A x A, diagonal Id (1,-1)
map, where A = PN, RN, FN’ or HN

(4.4.2) Proposition: Assume % € R, a 1is a unit in R, and
f: R~ Rp[/g] = 8

is a twisted quadratic extension with Galois automorphism v.

Then

(1) (f) : S > Endg(S)

is also a twisted guadratlc extension. More
precisely, there exists a ring isomorphism

G : SY[/T] + Endp(S) such that the following
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diagram commutes

S — s_[vVI
Y[ ]

le
T(£)
EndR(S).

For any s, + sZJT € SY(/T), G(s, + sz/T) is the endo-

1
morphism of 8 (as a right R-module) which sends 2z ¢ § to

5,2 + s2y(z), and

(11) RSS is isomorphic to Hom(S,R)s

R

(4,4,3) Theorem: If H 1is an index 2 subgroup of a finite

2-group, then Z[%]H > Z[%]G can be expressed as a product

of maps such that each component map 1s either in List (4.4.1)

or it 1s T of a map in List (4.4.1) (up to Morita eguivalence).
Thus the problem of computing the K-theory push forward

and transfer maps for Z[%JH + EE%]G is reduced to the

analogous problem for the maps in {(4.4.1).

(4.5) L-Theory for twisted guadratic extensions

Suppose we have a map of rings with anti-structure

£ i (R,ao,u) + (S,a,u)

where f : R =+ Rpt/EI = 8 1s a twisted quadratic extension

with Galols automorphism .

Then a trace for f 1s given by
X : Rp[JEJ + R; X(x + yt) = x, for all x,y ¢ R.

1
Since our X 1s fixed, we also denote £* by £,
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As in the Introduction we get a twisting diagram for
T (R,ao,u) + (S,a,u). Notice that the twisting diagram for
T : (R,dy,0) > (S,8,1) 1is the same as the twisting dlagram

for f (up to reindexing).

Ir 1 ¢R and a 1s a unit, then (4.3.3) and (4.1.2)

imply that

T(f) : (S,a,u) + (EndR(S),B,v)

is a map of rings with anti-structure where EndR(S) ~ SYE/I]

and T(f) 1s a twisted quadratic extension.

(4.5.1) Proposition: The twisting diagram for T(f) 1is

isomorphic to the twisting diagram for Yr (up to reindexing).

Suppose we equlip one of the twlsted quadratic extensilons

in (4.4,1) with anti-structure f: (ao,u) + (a,u). Then as

in (3.6.1) one can show that the twisting diagram for f is

determined by the rings, type (ao,u), and type (o,u).
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(4.5.2) List: Twisted quadratic extensions with anti-structure
f:R+Rp[/5] Type (£f) Type (£)|Type ('f) Type )

(1 |{r + T 0-+0 § -~ UIr{ 0 = UII 0-+0
N-1 N P

¥ UL +~ UL ULl + UII| UI - UII UL + UL

(3) - 0+0 S - UIrjy 0 - UIl 0-+0
RN—I ‘S’] P

4 +T 0-+0 s -~ VUl + UI -

(4) Ry N b 0~U 0~+0

(5) UILI + UIL UII * UIL|UII » UII ULl » Uil

(6) + F 0-+0 s Ul 0+ Ul 0-~+0
R'N-l N P

(7) |F + T c+0 S +UIr| 0 - ULl 00
N-1 N p

(8) UL + UL Ul » UII| UL -+ UILI UL + Ul

(9) Py > Hy 0-+0 UL+ o0 0~+0 UL + 0

(10) UII » UII UII -+ UIL|UII - UIL UI1 -+ UIX

Q1) {F, , > H 0+0 UL+ 0 0-+0 UL + 0

(12) + 0-+0 § -+ UIL{ 0 » UII 0~+0
HN-—]. HN P

d
(13) A+ AxA (ao,l)*(an,l)x(ao,l)_ (“o’°])"’GL (a0,1)+GL (ao.—1)+(a0,—1)><(a0,-1)

In fact we get isomorphisms of twisting diagrams between Cases

(2) and (8), and also hetween Cases (5) and T of (10).

(4.5.3)

structure f :

Theorem:
-

finite 2-group and H 1is an index 2 subgroup.

LP_twist diagram for

Suppose we have a map of rings with anti-

(z[%:]}[,uo,u) + (_za[%]G,a,u) where G 1s a

Then the

f decomposes into a direet sum of

diagrams such that each component diagram is isomorphilc (up

to reindexing) to the LP-twist diagram for one of the twilsted

quadratic extensions with anti-structure in List (4.5.2).
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(4.5.4) Definition: For any ring with antl-structure (S,a,u)

we let

OcK

(S,a,u)n = Ln

Otg - §,,a,u)

If f : (R,ao,u) + (Rp[/gl,a,u) is a twisted quadratic

extension of rings with anti-structure; then we get a "push

forward" exact sequence

£y
.+ (R_,uo,u)n > (S,a,u), (f!)n > ..,

a transfer exact sequence

t
iy !
y B (S,a,u)n - (R,uo,u)n + (f )n T e,

and a

(4.5.5) Relative Twist Diagram

(3,ya,u)q
2' 7 N TNy
0] Rewy sew] CEsmo]
N2 NS N N
£,y (V£ (£,)5 (e,
/N SN 7N 7N
(S,G,U)O (R,ﬁ)z (Ssasu)z (R,G,U.)2
~_ ~— I N A
(8,va,ul,
/-\N
/’—“\’(S,Ejﬁ)l (R,a,u)l/“\u(S,a,u)1 (R,Ejﬁ)3
N 7N S NN |
(Ye*), (fy ) 1 4 N (£, Yeh,
/N SN N N/
(S,a,u)2 (R,a,u)o (S,a,u)0 (R,a,u)0

(S,va,u)g
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Furthermore, we get a relative version of (4.5.3).

At the end of the paper there are tables giving the relative
push forward and transfer exact sequences for all cases in (4.5.2)
except cases (10) and (13). The twist diagram for (13) is easy:
the one for (10) is T of the one for (5). In particular, the
push forward map for PN-1+ HN, type UII + type UII is read off
Table 3 not Table 2 !

Each relative twist diagram from (4.5.2) is determined by
the groups along the top and bottom rows of the dlagram except
in cases (5) and (10). These are determined by using

£y (RN_l,T)O - (PN,T)O is trivial, and

t ~ .
Yel (HN,a)O F (PN_l,t)O is trivial.
Both these facts can be derived from the other diagrams.
Recall from (3.4.6) the short exact sequence

# ~ pH—E_ o

We write out the twisting diagram below to show that this

sequence splits.

(4.5.6) (f+; rN-l+ HN)’ Type O -~ O, Ll = Ll(HN > HN(E)’G)

727 — AT Teaaa ,—-*ﬁﬂ — /,_—————-\3

\/\f\/\/\/\/\/\ :

72 0 @ )t 0o @)t @) @ren)

/,L,F\/‘\/\QQ/\‘_} N
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APPENDIX I: Computing LP( ZG,0,u)

To compute LS( ZG,a,u) we shall use the sequence

ce. > L‘;( ZG,0,u) + LI;( z"zc,u,u) s Li( 26 +Z.G,0,u) ...

2

zZ/2z T even
Since LP(Z G,0,u) = (1.2.1), most of the work
S 0 r odd

comes in computing Ls__( ZGC+Z G,a,u) .

2
All of the antistructures encountered in surgery theoretic applica-

tions have the following description. We are given a homomorphism

w: G+ *1 ; an automorphism 0:G > G ; and an element beG. We require

wed = w ; 640(g) = bgb-l for all ge¢ ; @ (b) =1 ; and 8(b) =b . We

define two associated antistructures (@,u) by

alg) = w(g) 9(3_1) for all geG: u = *bh.

We call such an antistructure a geometric antistructure.

Given any anti-automorphism ©:ZG + ZG which takes G to =G, there
are 6 and © so that a(g) = m(g)e(g-l) for all g € G. No integral group ring
is known to have units of finite order other than *G, so it is conceivable
that all anti-automorphisms have the above form. One can produce units which
are not of the form b ( scale by some strange unit in the group ring ).

Any geometric antistructure can arise in the codimension 1 surgery
diagram. The small group, H, is our G and the G is

1 2

T= G*Z/ tgt  =08(g); t° =D

where t generates Z . There are two extensions of @ to T and the correct

~ ~
choice yields a for aw and u for 1.

In Part 1 we compute Lz( Z6 +Z G,x,u) for any geometric anti-

2

structure. In Part 2 we compute ‘i’2r and settle the extension

questions which arise.
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Part 1: Compute LE( ZG > 2.,6,0,u)

The goal of this section is to explain how to use Table 1 to compute
LE( G +ZA2G,a,u) for any geometric antistructure given the characters of
the irreducible rational representations. Henceforth, X denotes such a
character.

The subtables of Table ! are labeled by a type, U or 0: we assign a
type ( GL, U, O, or Sp) to each X. The columns of these subtables are
labeled by a symbol FN’ FN’ RN, or HN or by a symbol UIN or UIIL.

In steps 1 and 2 below we show how to determine Type X. In steps 2 and
3 we show how to assign a symbol EX = PN’ FN’ RN’ or HN or a symbol

Uy = UIN or UIL.

Step 1l: Initial crucial remarks.

The type of X really depends on X and (o,u) but as the antistructure
is fixed during one of these calculatjons we suppress it.

We first determine if X has type GL or not:

Type X is GL iff  X(g) # w(g)x(e(g—l)) for some geG.

Define a character xa by xa(g) = m(g)x(e(g—l)) for all geG.

If ¥ has type GL, it makes no contribution to any L theory. If ¥ does
not have type GL, we let Lr(x) denote the contribution of X to
Lz( ZG +£2G,a,u) . In the remaining steps we assume that the type of X is

not GL.

Step 2: Type and initial symbol calculations.

Compute the two numbers

1 . 2
o= To]  ghl®X@@W 5 ST TGT g x(g")

From T and S we find the type of Y3 partial information about Ey
X X

and define a number m for later use. Explicitly
X
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T e S E
X R X X ™
positive 0 positive RN 1
zero g zZero PN or Fy 1
negative Sp negative HN 2
where N is defined as follows: ZN = mX6X and we can always find & from

1 .2
SX = TeT gEG x{g))

However, 4f T £ 0,

= |T. | 3 0, 8§ =1|s
X sx [x' ifSx#‘x Ix[

1E Tx #0 and SX # 0, go directly to step 4.

If TX 0 and SX # 0, we have Uy = UIL : go to step 4.

Step 3: Unresolved issues and a pairing.
If SX = 0, we must determine a symbol. If the type of ¥ is U, we use
AI.1.1 below to decide if Uy = UIN or UIL: if the type of X is O or Sp’

we use AL.l.2 below to decide if Ey = PN or FN.

We will determine these symbols by using a pairing
A : Q6 X6 + Q
where QG is the rational vector space based on the conjugacy classes of G, and
A(c,,c)) = I x(gh)
1*72
geC1
heC2

We shall need some related pairings which. we proceed to define.

For each N there is an operation, AN’ on QG which sends a conjugacy

N-1
52

class, C, to C . Define TN(Cl’CZ) = A(CI,KN(Cz)) 5
There is an operation, o, on'aa which sends a conjugacy class, C,
to w(08(CY) € Q& . Define A(C;,Cp) = A(Cy,a(c,)) .

These pairings are used in the following results.
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(AT.1.1) Assume that SX = Tx = 0 and let ZN = m.xﬁx. Then UY = IJ’JZN or UIL:

Uy = U’.LN iff Tl(C,C) = A(C,C) for every conjugacy class C of G.

- N - - »
(AT.1.2) Assume SX =0 and let 2 = mchx . Then EY I'N or FN'

EY = I'N iff Tl(C,C) = TN(C,C) for every conjugacy class C of G.

Remark: Of course the symbol Ex is just the name for a Z [s]-maximal
order in the division algebra associated to X (see section 2.2) and hence
EX is independent of the antistructure. We could use SX’ N, and AIL.l1.2 to
find EY for any X we wanted. Working through the steps as ocutlined above

only computes Ey if it is needed to read Table 1.

Step 4: Find the contribution of ¥ to L[;( ZG +ﬁ2G,a,u)

If ¥ has type U, we use subtable U: Lr(x) is found on column Uy on

the row "odd" if r is odd or on the row "even'" if r is even.

If X has type O or Sp, we use subtable O: Lr(x) is found in column
EY on the rowk=13,2,1, or 0: R=r (mod 4) if Type X is O;

A = r+2 (mod 4) 1if Type X is Sp.

Part 2: Compute LP( zg, a,u)
r——— L

We have reduced this problem to understanding a pair of exact sequences

9 K ¥
G,a,u) L, Lgr( ZG,0,u) —E-’Lg_r( QZG,G,U) ~2r,

0~ (zc +Z2

P
L2r+1 2

3
G,0,u) 2r

P 7 1P
Ly (ZG >Z Ly.1€ ZG,0,u)> 0

2

(for r = 0, 1). Some f:erminology will be useful.

A representation (or its character ¥) is called cyclic if it can be
obtained by pulling back the faithful irreducible rational representation
of CN along some epimorphism y: G - GN, N 2 0. A representation (or its

character) is called dihedral if it can be obtained by pulling back the
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faithful irreducible rational representation of DN along some epimorphism

Y: G+D_, N = 3.

The epimorphism y determines X but not vice versa. The kernel of
X determines the kernel of vy but ¥ only determines y up to an automorphism
of the gquoient.

Next we determine ¥, . Since L} (Z,G,0,u) * Z/2Z , ¥, is either

trivial or one to one.

Theorem AT.2.1: er is determined by:
?o is one to one iff there is a type O cyclic representation;

?2 is one to one iff there is a type SP cyclic representation.

It is easy to describe ‘the right-hand extension.

Theorem AY.2.2: 32r is a split epimorphism.

The left-hand extension is more difficult to describe, since even if
Kor is onto, two different things can happen.

Associated to a dihedral representation y: G * D, there are two other

N
maps; Y;: G+ %1 = DN/CN~1 and Y,: ker Y, * Cy , * *1. A dihedral
representation is twisted ( with respect to the geometric antistructure
6,w,b) iff Y, is 0 invariant and Yz(y-le(y)) = -1 for any (and hence
every) y € G-ker Yy

A cyclic representation is twisted 1ff the composite GY; CN + %]

gsends b to -1.

We have

Theorem AT.2.3: If KO is onto, then it is split unless there is a type

UI twisted cyclic or a type O twisted dihedral representation. Then Ko is

not split.
If Ky is onto, then it is split unless there is a type Ul twisted cyclic

or a type Sp twisted dihedral representation. Then K, is not split.

P = -
If Ko is not split, then any x € Lzr(Z:G,a,u) with Kzr(x) = -1

has infinite order.
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To apply the above results it is desirable to be able to f£ind cyclic
and dihedral representations. A return to the theory behind the results in
Part I yields the critera below.

A character X is cyclic iff EX = FN or R0 and X(e) = ZN or 1. A

character X is dihedral iff EX = RN and X(e) = 2N+2. A cyclic character X

N
is twisted iff (b2 ) = -X(e); a dihedral character X is twisted iff

g
x((g "8(g)) ) = -x(e) for at least one g € G.

Another way to give such representations is to give the epimorphism 7y
directly. In this case there is a quicker way to find the type than by
using step 2 of Part l.

In the cyeclic case, extend y: G CN‘ to Q: G > CN by defining
Q(—g) = -y(g). Recall that « induces a map from G to *G.

X has type UL iff ?(8_1) = $(ale) for all g £ G
X has type O or Sp iff Q(g) = §(a(g)) for all g £ G
the type is 0 if Y(u) = 1; the type is Sp if ?(u) = -1.

Any twisted dihedral representation has type O or Sp. For any g € G,
define Tg = w(g)x(gb(g)ul): Tg is either 0, X(e), or -X(e). We have type
0 if there exists a g € G with Tg = X(e): we have type Sp if there exists

a g € G with Tg = ~x{e).

Any cyclic character with y(e) = 1 is called linear: anmy cyclic
character with y(e) = 2 is called quadratic. A linear cyclic character is
either the trivial character or a cyclic character with y: G + Cl' The
quadratic characters are the cyclic characters with y: G -+ CZ' Notice that
the linear characters are in one to one correspondence with Hl(G; Z/2ZZ2).

Examples:

1) (ZG,o,e) ofg) = g—l : any non-linear cyclic representation is type
U; all the linear ones are type 0. Therefore Wz is trivial: Wo is one to
one. There are no twisted cyclic or twisted dihedral representations, so

K, 1s split.

2

2) (JEG,um,e) alg) = m(g)gml; ® non-trivial: any non-quadratic cyclic
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representation has type GL or V. A quadratic representation y: G > C2 has
either type GL or 0. The type is 0 iff the composite GL Z/4Z~ %1 is

w. If we consider w € Hl (G; Z/2Z ), there are type 0 quadratic representa-
tions iff mz =0 ¢ Hz(G; Z/2Z ). Therefore ‘l’2 is always trivial: ‘FO is
trivial 1iff wz # 0. There are no twisted cyclic or twisted dihedral

representations, so K,  1is split whenever it is onto.

2r
3) (ZCN,a,x) ag) = g—l ; XE CN a generator: the non-linear representa-
tions have type U. The trivial representation has type 0; the other linear
representation has type Sp. Therefore both ‘l’o and ‘1’2 are one to one.

4) (ZG,a,u) : G = CN X Z/ZZN-lgenerated by x€ CN and te Z/2Z ; w(x) =

1 = —w(t); 0(x) =x; B(t) = t:xz ; u=x. There is a type UT twisted cyclic
representation and no type O or Sp cyclic representations. Hence both Ko

and €, are onto but neither is split.

APPENDIX II: Computing push forward maps and transfers

We wish to describe how to compute the push forward and transfer maps
associated to an index 2 inclusion of groups, say H ¢ G. We will assume
that we have a map of rings with antistructure and that the antistructures
are geometric, but we begin by describing the "simple pieces" of the
map QH *+ QG.

To do this requires some notation. If Xg is the character of an
irreducible rational representation of H, define

x;(h) = xn(tht-l) for all he H; t £ G~H is a fixed element.
If X is the character of an irreducible rational representation of G, define

xw(g) = Pz x(e) for all g € G; where $: G -+ *1 has kermel H.

Recall (1.3) that QH is a product of simple rings indexed by the
characters, XO’ of the irreducible rational representations of H: QG has
a similar description. The map QH + QG is é product of the following three
sorts of maps. In the three descriptions below, Xo is a constituant of

X restricted to H:



Case I: xg =X 3 X # xlp : AXo - A %A ¥

X X
Case II: xg#xo;x=x‘p: A XA, > A
Xo Xo
case IIT: Xt = %o 5 x = XV ¢ >
ase IIT: X; =Xq 3 X=X * A > A
0

When we add the antistructures to the picture, we need to refine this

decomposition further into types. We proceed to describe the various cases

which occur. Recall Xa(g) = w(g)X (S(g—l)) (Appendix I, step 1).

The easiest to describe is the GL type. Here, two pieces of the same
sort ( I, II, III ) are interchanged by the antistructure. A GL type
makes no contribution to the L theory and so can be ignored.

In case T there are two types in addition to the GL type discussed
above. These further types are denoted IXOGL and IXOA. In IXOGL,

Ol a ‘1’, 0‘-_- G=
Xo = Xo and X = X : inIXOA, Xq Xq and X X-

There are similar types in case II: denoted IIGLX and IIAX. We have

type IIGLX if xg = XS and Xu = ¥ : we have type ITAX if xg = XO and Xa = Y.

In case III the type is either GL or xg = XO and xa = ¥X. This time
we divide into type III2 and III3. To describe these two types compute
d = ZN and m = mx for X. ( This was probably done in computing the L
group, but, if not, step 2 in Appendix I will do it.) Compute the

corresponding numbers d0 and m, for Xg* Finally, decide if X and Xo both

have type UIIL or not.

Assume either that my =m Or that not both ¥ and XO have type UIIL:

we have type III2 iff 2d0 =d
we have type TII3 iff d0 = 2d

Assume that my =m and that both X and Xo have type UII:

we have type ITI2 iff o = 2

we have type III3 iff m = 2
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Some further definitions will be useful, To describe the maps which

come up in cases I and II, define the following kinds of maps:

a A-map is a map A+ B0 x B1 so that the two composites

x i s
A~ Bo Bl + Bi are 1lsomorphisms;

an A-map is a map A0 x Al + B so that the two composites
A.i + AO X Al + B are isomorphisms.
In case III, we introduce the notion of subtype:
if Type XO = Type X 1is 0, the subtype is 0;
if Type Xp = Type X 1is Sp’ the subtype is Sp;
if Type Xp = Type X 1is U, the subtype is U:
if Type %o # Type X we have a mixed subtype.

There are four cases of mixed subtype denoted

0->U U>0
S »U Uu-+s
P P
Part 1: Relative push forward maps

OQur goal is to describe

N if ~
(ATI.1.1) ...> Li( ZH +7Z, H,a,u)-——'—»Li( ZG +~Z.G,u,u) + Lg(i')‘-*

2 2

This sequence decomposes into a product of exact sequences where the
product is taken over the types in the decomposition of the map QG -+ QH.
Since GL types make no contribution we need only describe what happens in
the remaining cases., We begin with cases I and II: in the four cases

below we list the contribution of the type to AII.1.l.

IXGL: ... > Lr(;{o) + 0 > Lr(IXOCL!)-*
: U
IX) s .. Lr(XO) > Lr()() X Lr()( )y - Lr(LXOA!) F s

where i, is a A-map

IIGLX: ... + 0 + L () + L ( TIGLX,) + ...
. .
IIAX: ... > L (xg) *x L (xg) >~ L0 + L (IIAX,) + ...

where i, is an A-map.
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In case III we either use Table 2 or Table 3». We must decide which
subtable to use; which row of that subtable; and which columns to use.
An integer £ mod 4 (or mod 2 on the U + U subtable) determines a sequence
of three groups on each row: this sequence will be isomorphic to the
contribution of this factor of the map to sequence AII.1.1.

If the type is III2 we use Table 2. If the subtype is mixed it is

Type X, * Type X.

subtype subtable row »2
0 0+0 EXq © EX A =1 (mod 4)
sp 0~+0 Ex, < EX A = r+2 (mod 4)
u U+U U, > UX & = r (mod 2)
(A.11.1.2) o0+U 0> Uy EX, < EX % = r (mod 4)
s> U 0+ Ux  Exy ©FxX % = r+2 (mod 4)
uU-+0 uy + 0 - A=t (mod 4)
urs x>0 - £ = r+2 (mod &)

Remarks: The — in the row column means that the subtable in question
has only lrow.In the 0+ U (or Sp+ U ) case we may need to go back to
steps 2 and 3 in Appendix I to compute EX. Yote that we do not need EY

if we are using subtable 0 + UII, EXO suffices.

If the type is III3 we use Table 3. If the subtype is mixed, it is

Type X * Type X,4-

subtype subtable row '2
0 0+0 EX < EX, £ =1 (mod &
5, 0+0 EX © X, A= r+2 (mod 4)
v U~+U Ux > UX, £=r (mod 2)
(AI1.1.3) 0+TU 0o+ UX EX <EX, #= r (mod 4)
s;r U 0+UX EX cEx, £= r42 (mod 4)
u=+0 Uy =+ 0 - /&Er(modlo)
u-+s ox *+ 0 - Rz r+2 (mod 4)
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Remark: The only visable difference between AYI.l1.2 and AITI.1.3 is that

in the row colunn we have interchanged the role of Xo and X. A closer
study shows that on the 0 > UIN subtable we need EX to use Table 2 but that

on Table 3, this subtable has only one row.

Part 2: Relative transfer maps

This time our goal is to describe

A . A 1
(ATI.2.1) ...+ Lz( ZG + 26,0, u) —i—> Lg( ZH + Z.H,0,u) > Lf__’(i') * .

2 2

As in part 1 of Appendix II, we get that AII.2.l1 is a sum of exact
sequences. We describe the contribution from each of the non-GL types.
1
IX,GL: ... > 0~ Lr(XO) + Lr(IXOGL ) F e
. v !
IXA: eee > Lr(x) x Lr(x ) - Lr(xo) + Lr(IXGA I
!
where 1’ is an A-map
1
IIGLX: ...* L (X) > 0 = L_(IICLX") + ...
t !
TIAX: ... *> Lr()() - Lr()(o) % Lr(xo) - Lr(IIAX Y g
!
where 1i° is a A-map.
If the type is ITI2, we use Table 3: if the subtype is mixed it is
Type Xo + Type X. The subtable-row- _f data is read off chart AII.1.2.
If the type is ITI3, we use Table 2: if the subtype is mixed it is

Type X = Type Xo* The subtable-row- & data is read off chart ATI.1.3.

Part 3: Push forward and transfer maps

We want to describe

i'
(AIT.3.1) ..., = Lf_( ZH, o, u) -—-'—»Lf.( ZG,d,u) > LE(:‘L,) > ...

and i

* 1
(a11.3.2) ... > 1B z6,0,0) Lo 1P( zH,0,0) > LBEEY + s

A A
The map LE_( ZZH,m,u) - Lg( EZG,a,u) is an isomorphism, so Lrp:(i,) is
isomorphic to the relative group computed in part 1 of Appendix II. The map
A A
Lg( EZG,OL,u) > L]P;( ZZH,a,u) is always the zero map so we have not yet

1
computed Lz(i'). We leave this for [H-T-W].
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The maps in AII.3.1 and AII.3.2 are almost completely determined by the
corresponding maps in the relative sequences, AII.l.l and AII.2.1. In some
cases the fate of elements which map non-zero into the 2-adic terms is
ambiguous. In one case we can give a complete description.

Define the notion of a twisted quaternionic representation by

replacing D, N 23 with Qg, N 2 4 everywhere. We say that ( ZG,o,u)
satisfies condition ARF, iff there are no UL twisted cyclic; O twisted
dihedral; 0 twisted quatermionic; or O cyclic representations: (ZG,a,u)
satisfies condition ARF, iff there are no UI twisted cyclics SP twisted
dihedral; Sp twisted quaternionic; or Sp cyelic representations.

1f ( ZG,a,u) satisfies condition ARF we can define an element

2r?

P . = =1:
AZrELZr( ZG,0,u) such that Ay has order 2; KZr(AZr) 1; and the

following theorem holds.

Theorem AIT.3.3: Let i:{ ZH,a,u) > ( ZG,0,u) be the usual map. If

( ZH,a,u) satisfies condition ARFZr then so does ( ZG,0,u). Moreover
!
1!(A2r) = Aop 3 = (AZr) = B

The antistructures which arise in ordinary surgery theory ( the ones
with a = N and u = e ) mnever have any twisted representations. Hence

they satisfy condition ARFZ]: iff «, 1s onto.

Our proofs of these results must wait for {H-T-W], but perhaps a word
is in order as to how they go.

The first step is to use representation theory to show that all problems
can be resolved by studying a short list of groups (e.g. Theorem 2.2.2).

To do the necessary calculations for these groups involves the explicit
calculations in Section 3 and the work of C. T. C. Wall [W4-w8]. Finally,
whenever the going gets tough, we resort to a twisting diagram (e.g. 4.5.6).
Twisting diagrams seem to be a new tool of some power in the long history

of these sorts of calculations.
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TABLE 1
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