SURGERY GROUPS AND INNER AUTOMORPHISMS

Lawrence R. Taylor

The object of this paper is to investigate the map induced on surgery groups by an inner automorphism of the group. To describe our results, let \(\omega : G \to \mathbb{Z}_2 \) be a homomorphism. \(L_n(G, \omega) \) is the \(n \)th Wall group. This notation is ambiguous as there are Wall groups \(L_n^\mathbb{Z} \) for simple homotopy equivalence, \(L_n^h \) for homotopy equivalence, and there are other possibilities (see section 1 for a thorough discussion). \(L_n \) denotes any of these groups.

\(\text{Aut}(G, \omega) \) denotes the group of automorphisms of \(G \) which preserve \(\omega \). There is a homomorphism \(\gamma : \text{Aut}(G, \omega) \to \text{Aut}(L_n(G, \omega)) \). Finally there is a standard homomorphism from \(\mathbb{Z}_2 \) to the automorphism group of any abelian group. If the group is written additively, \(-1 \in \mathbb{Z}_2 \) just goes to multiplication by \(-1\).

Theorem 1:

\[
\begin{array}{ccc}
G & \xrightarrow{\omega} & \text{Aut}(G, \omega) \\
& \searrow & \downarrow \\
& & \text{Aut}(L_n(G, \omega)) \\
& \swarrow & \nearrow \\
\mathbb{Z}_2 & \xrightarrow{\omega} & \text{Aut}(L_n(G, \omega))
\end{array}
\]

commutes.

Corollary 1.1: If \(G \to \mathbb{Z}_2 \) is trivial, then any inner automorphism induces the identity on \(L_n(G, \omega) \).

Corollary 1.2: If \(\text{Center}(G) \to \mathbb{Z}_2 \) is onto, then \(L_n(G, \omega) \) is a \(\mathbb{Z}_2 \)-vector space, and any inner automorphism induces the identity.

Here are examples of non-trivial actions on \(L_n(G, \omega) \). Let \(\alpha : \mathbb{Z} \to \text{Aut}(\mathbb{Z}) \iso \mathbb{Z}_2 \) be onto, and let \(K \) be the semi-direct product of \(\mathbb{Z} \) and \(\mathbb{Z} \) by \(\alpha \). There is a homomorphism \(\omega : K = \mathbb{Z} \times_\alpha \mathbb{Z} \to \mathbb{Z}_2 \). By Wall [5], page 171, \(L_1(K, \omega) \iso \mathbb{Z} \) and \(L_2(K, \omega) \iso \mathbb{Z} \oplus \mathbb{Z}_2 \). Any element \(k \in K \) such that \(\omega(k) = -1 \) gives an inner automorphism of \(K \).
which does not induce the identity on L_1 and L_2, $K \times Z \times Z$ with the obvious ω has inner automorphisms which are the identity on neither L_1, L_2, L_3, nor L_4.

Cappell and Shaneson [1] have defined surgery groups $\Gamma_n(\mathcal{F})$, where $\mathcal{F} : Z[G] \rightarrow A'$ is an epimorphism of rings with involution. Any $g \in G$ induces an automorphism of \mathcal{F} by acting on $Z[G]$ via conjugation by g and on A' via conjugation by the image of g in A'. This gives a homomorphism $G \rightarrow \text{Aut}(\mathcal{F})$. The Γ_n are functors, so there is a homomorphism $\text{Aut}(\mathcal{F}) \rightarrow \text{Aut}(\Gamma_n(\mathcal{F}))$. As with Wall groups, Γ_n denotes any of the possible torsions or projective classes which can be used to manufacture Cappell-Shaneson groups.

Theorem 2:

$$
\begin{array}{ccc}
G & \rightarrow & \text{Aut}(\mathcal{F}) \\
\downarrow w & & \downarrow \\
Z_2 & \rightarrow & \text{Aut}(\Gamma_n(\mathcal{F}))
\end{array}
$$

commutes.

There are also relative Wall and Γ groups associated to any groupoid of finite type. If \mathcal{H} is the groupoid, there is given a homomorphism of groupoids $\omega : \mathcal{H} \rightarrow Z_2$. $\text{Aut}(\mathcal{H}, \omega)$ will denote the automorphism group of the groupoid whose elements preserve ω. Each element of $\mathcal{H} \rightarrow Z_2$ gives a collection of automorphisms, $\mathcal{r} G$, where $\mathcal{r} G$ is just the inner automorphism on G given by the component of G in the product.

$$(\mathcal{H}) \subseteq \mathcal{H} \rightarrow Z_2$$

is the subgroup such that $\{\mathcal{r} G\} \in \text{Aut}(\mathcal{H})$. $(\mathcal{H}) \subseteq \mathcal{H}$ is the subgroup such that $\omega(g_{G_1}) = \omega(g_{G_2})$ where $G_1, G_2 \in \mathcal{H}$ are arbitrary and g_0 is the component of G in the product.

Conjecture:

$$
\begin{array}{ccc}
(\mathcal{H}) \subseteq Z_2 & \rightarrow & \text{Aut}(\mathcal{H}, \omega) \\
\downarrow w & & \downarrow \\
Z_2 & \rightarrow & \text{Aut}(\Gamma_n(\mathcal{H}, \omega))
\end{array}
$$

commutes.

There is a similar conjecture for Γ groups.

Almost all that I can prove is

Theorem 3: The conjecture is true for the Wall groups L_{2k}, L_{2k+1}^h and L_{2k+1}^h if \mathcal{H} is a pair. I know nothing about relative Γ groups.

Remarks: The obvious versions of Corollaries 1.1 and 1.2 are
valid for Theorems 2 and 3, and all are proved by simple diagram chasing.

Notice that the groups are not assumed to be finitely generated or finitely presented.

Section 1: Preliminaries.

Wall and Γ groups can actually be defined for any rings with involution, not just integral group rings. Even Wall and Γ groups are obtained by a Grothendieck construction from modules with quadratic form plus additional structure. If A is a ring with involution, and, if $A \subset K_0(A)$ is a subgroup invariant under the induced involution, then we can define Wall groups $L^{A}_{2k}(A, -)$ by insisting that our module be a projective module whose image in \tilde{K}_0 is contained in A. If $B \subset K_1(A)$ is invariant under the induced involution, and, if we insist that our modules be free and based, then we can define Wall groups $L^{B}_{2k}(A, -)$ by insisting that the torsion of the adjoint map lie in B.

Even Γ groups can also be defined. Given $\mathcal{F} : \Lambda \to \Lambda'$ a local epimorphism (see [1]) we have quadratic modules over Λ with nice properties when tensored over Λ'. If $A \subset K_0(A')$ and $B \subset K_1(A')$ are invariant subgroups, we can define $\Gamma^{A}_{2k}(\mathcal{F})$ and $\Gamma^{B}_{2k}(\mathcal{F})$ by insisting in the first case that our modules when tensored are projective with class in A and in the second case that our modules are free and based over A and the adjoint map when tensored over A' has torsion in B (this uses lemma 1.2 of [1]).

Hopefully the above motivates considering $Q_{\mathcal{K}}(\Lambda, -)$, the category whose objects are $\xi \in [F, \Lambda, \mu]$ where F is a right Λ-module; $\lambda : F \times F \to \Lambda$ is a map; $\mu : F \to A/(x^{\pm 1})^{K_{2k}}$ is a map; and the five relations of Wall [5] page 45 are satisfied (with $\chi_n(x) = 0$). Morphisms are just Λ-module homomorphisms which preserve this extra structure. $Q_{\mathcal{K}}(\Lambda, -)$ is a similar category: the only difference is that now we require F to be free and based. The first two paragraphs of this section just say that Wall and Γ groups, with any torsions, etc. are constructed.
naturally from various subcategories of Q_k and Q_k^t. We remark that any map of rings with involution induces a functor on Q_k and on Q_k^t.

Odd Wall and Γ groups are more tricky. L_{2k+1}^B can be defined as a quotient of $U(A;B)$, where $U(A;B) \subseteq U(A)$ is the subgroup of the infinite unitary group over A whose elements are those matrices in $U(A)$ with torsions in B. L_{2k+1}^A can be defined directly (Novikov [4]) or by a theorem of Farrell-Wagoner which equates L_{2k+1}^B to L_{2k} of some other ring. We will use this latter method.

Γ_{2k+1}^B can be defined as those elements of $L_{2k+1}^B(A')$ which come from elements in $U(A)$ with a special property. One might define $\Gamma_{2k+1}^A = \{ x \in L_{2k+1}^A(A') | 2x \text{ is in the image of } K_{1}(A') \rightarrow K_1(A') \rightarrow \frac{A}{\mathcal{F}} \rightarrow L_{2k+1}(A') \rightarrow \Pi_{2k+1}(A') \}$. I know of no use for groups like Γ^A, so the definition is not very important.

As is usual with surgery groups, the proof divides into an even and an odd case.

Section 2: The Even Case.

Let A be a ring with involution $-\dagger$, and suppose u is a unit of A such that $u^{-1}u = \pm 1$. It follows that $u^{-1}u = u^{-1}u$. There is an isomorphism of rings with involution $r_u : A \rightarrow A$ given by $r_u(x) = u^{-1}xu$. Any such map induces functors $u : Q_k(A, -) \rightarrow Q_k(A, -)$ and $u : Q_k^t(A, -) \rightarrow Q_k^t(A, -)$.

On the category Q_k (or Q_k^t) there is a functor c such that $c([P, \lambda, \mu]) = [P, -\lambda, -\mu]$. Note $c \circ c$ is the identity.

Theorem: Let $\xi \in Q_k(A, -)$. Then $u(\xi)$ is naturally isomorphic to $\{ \xi \text{ if } u^{-1}u = 1 \}$ or $c(\xi)$ if $u^{-1}u = -1$. If $\xi \in Q_k^t(A, -)$ then the torsion of the equivalence is in $\{ u \}$, where $\{ u \}$ is the subgroup of $K_1(A)$ generated by the unit u.

proof: Under u, the module P goes to $P \otimes A = P^H$, where A is made into a A-module using r_u. Let $i : P \rightarrow P^H$ be the natural map. Then i is r_u-linear, that is, $x \cdot a = i(i^{-1}(x) \cdot uau^{-1})$ where x is the product in P^H and \cdot is the product in P. $u(\xi)(x, y) = r_u(\lambda(i^{-1}(x), i^{-1}(y)))$ and
\[u_\mu(x) = r_u^k \mu(1^{-1}(x)) \text{ where } r_u^k \text{ is the map induced on } \Lambda/\{x+(-1)^k x\} \text{ by } r_u. \text{ If } P \text{ is based, use } 1 \text{ to base } P_\mu. \]

Consider \(\xi^u = [P^u, \lambda_u, \mu_u] \) where \(\lambda_u(x,y) = \overline{u} \lambda(1^{-1}(x),1^{-1}(y))u \) and \(\mu_u(x) = \overline{u} \mu(1^{-1}(x))u. \) Clearly

\[\xi^u = \begin{cases}
 \xi_u(\xi) & \text{if } u\overline{u} = 1, \\
 c(\xi_u(\xi)) & \text{if } u\overline{u} = -1
\end{cases} \]

Hence \(\xi^u \in Q_\text{K}^r \) or \(Q_\text{K}^l. \)

Define \(j:P \to P^u \) by \(j(x) = 1(x) \times u^{-1} = 1(x \cdot u^{-1}). \) \(j \) is a \(A \)-module isomorphism and one easily checks

\[\begin{align*}
 j \times j & \quad \text{and} \\
 P \times P & \quad \text{and} \\
 P^u \times P^u & \quad \text{and}
\end{align*} \]

\[\begin{array}{c}
 P \xrightarrow{\lambda} A \\
 P \xrightarrow{\mu} A/\{x+(-1)^k x\}
\end{array} \]

commute. Hence, in \(Q_\text{K}(A,-) \), \(\xi \) and \(\xi^u \) are isomorphic.

If \(\xi \in Q_\text{K}(A,-) \) then the torsion of the isomorphism clearly lies in \(\{u\}. \)

Since \(c \circ c = \text{id} \), \(u_\Psi(\xi) = \begin{cases}
 \xi & \text{if } u\overline{u} = 1, \\
 c(\xi) & \text{if } u\overline{u} = -1
\end{cases} \) where \(c \) equal means isomorphic. It is easy to check that \(j \) gives a natural isomorphism. Q.E.D.

The theorem plus the discussion in section 1 almost proves Theorems 1 and 2. We need only further note that, if \(\xi \) goes to an element of \(L_{2k}^r \) (or \(L_{2k}^l \)), then \(c(\xi) \) goes to the inverse element.

For Theorem 3, we have the following situation. We have rings with involution \(A \) and \(A_1, \ldots, A_n \); maps \(h_1:A_1 \to A \) of rings with involution; and units \(u \in A \), \(u_1 \in A_1 \) such that \(u\overline{u} = u_1 \overline{u}_1 = +1 \) and each

\[\begin{array}{c}
 A_1 \xrightarrow{h_1} A \\
 r_{u_1} \circ h_1 \quad \text{and} \\
 r_u \circ h_1 \quad \text{and}
\end{array} \]

commutes.

Wall’s description ([5] page 72) of the groups \(L_{2k}^r(A;A_1,\ldots,A_n) \) (dropping mention of torsions gives \(L_{2k}^r \)) and our theorem easily show \(r_u \) induces \(\begin{cases}
 \text{id} & \text{if } u\overline{u} = 1, \\
 \text{id} & \text{if } u\overline{u} = -1
\end{cases} \) on these relative Wall groups.

475
Section 3: The Odd Case

Again A is a ring with involution - and u is a unit such that
\(u^2 = 1 \). \(r_u \) induces a map on \(U(A) \) which covers the map induced on Wall groups. \(U(A) \) is the limit of the finite unitary groups \(U_{2n}(A) \).

\(r_u \) induces maps \(u_\#: U_{2n}(A) \rightarrow U_{2n}(A) \) which takes the matrix \(a_{ij} \) to \((u^{-1}a_{ij}u) \). Let \(c_n(u) \) be the diagonal matrix

\[
\begin{pmatrix}
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0 \\
\end{pmatrix}
\]

with \(u^{-1} \) in the first \(n \) positions and \(u \) in the last \(n \). Given

\(M \in U_{2n}(A) \), \(M' \) denotes the matrix with basis \(e_1, f_1 \) changed to \(e_1, -f_1 \) (see Wall [5] page 62).

Theorem: \(c_n(u) \in U_{2n}(A) \) and if \(M \in U_{2n}(A) \),

\[
u_\#(M) = \begin{cases} c_n(u)^*Mc_n(u)^{-1} & \text{if } u^{-1}u = 1 \\ c_n(u)^*M'c_n(u)^{-1} & \text{if } u^{-1}u = -1 \end{cases}
\]

Proof: That \(c_n(u) \in U_{2n}(A) \) is just a formal check. Our equation for \(u_\#(M) \) is obvious. Q.E.D.

Since Wall groups are abelian, and since \(M' \) is the inverse in the Wall group, we have proved Theorem 1 for \(u \in B \in K_1(A) \).

Now Farrell-Wagoner [3] showed \(L^A_{2k-1}(\mathbb{Z},-) \) and \(L^A_{2k}(\mathbb{Z},-) \) are naturally isomorphic. \(\lambda A = A/\mathfrak{M} A \), where \(\mathfrak{M} A \) is the ring of locally-finite matrices over \(A \) and \(\mathfrak{M} A \) is the ideal in \(A \) of matrices with only finitely many non-zero entries. Note \(A \in K_0(A) = K_1(\mathfrak{M} A) \) by Farrell-Wagoner [2].

Naturality shows \(r_u \) and \(r_\mu \) commute,

\[
\begin{array}{ccc}
L^A_{2k-1}(\mathbb{Z},-) & \xrightarrow{ru} & L^A_{2k-1}(\mathbb{Z},-) \\
\downarrow L^A_{2k}(\mathbb{Z},-) & & \downarrow L^A_{2k}(\mathbb{Z},-) \\
L^A_{2k}(\mathfrak{M} A) & \xrightarrow{r_\mu} & L^A_{2k}(\mathfrak{M} A)
\end{array}
\]

where \(\mu \) is the infinite diagonal matrix with all \(u \)'s. Our result for the even case now carries over to this case.

The groups \(\Gamma_{2k-1} \) are subgroups of odd Wall groups so we are done in this case also.
For $L_{2k-1}^h(A_1^1;\ldots,A_n^1)$ we use a relative version of the above
Farrell-Wagoner theorem to place ourselves in the case
$L_{2k}^S(\lambda A_1;\ldots,\lambda A_n^1)$, which we know.

The reader may wonder why we do not just use the well known
Shaneson-Wall splitting theorem instead of this strange theorem of
Farrell-Wagoner. The point is that the Shaneson-Wall formula is known
only for finitely generated, finitely presented integral group rings
and rings with $1/2$, whereas the Farrell-Wagoner formula is valid for
an arbitrary ring with involution. Non-finitely generated groups play
a role in surgery on paracompact manifolds, so we wish to avoid any
finiteness assumptions on G.

1. S. Cappell and J. Shaneson, The codimension two placement problem
 and homology equivalent manifolds, preprint, 1972.
2. T. Farrell and J. Wagoner, Infinite matrices in algebraic K-theory
4. S. Novikov, Algebraic construction and properties of Hermitian
 analogs of K-theory over rings with involution from the viewpoint
 of Hamiltonian formalism. Applications to differential topology