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K(Z, 0)AND K(Z2, 0)AS THOM SPECTRA

BY

F. R. COHEN, J. P. MAY AND L. R. TAYLOR

Let X be a connected space. For a map f: X - BO or f: X - BF, one can
choose a filtration off by restrictions FpX - BO(np) or FpX - BF(np), pull
back the universal bundles or spherical fibrations, take Thom complexes, and
so obtain a Thom spectrum Mf. These Thom spectra of maps were first in-
troduced and studied by Barratt [unpublished] and Mahowald [10], [11]; their
original work in this direction dates back to the early 1970’s. A detailed
analysis of this construction has recently been given by Lewis [2], [8]. Mf is
independent of the choice of filtration and depends only on the homotopy class
off. For f: X - BO, Mf is the same as M(jf), j: BO- BF. There is a Thom
isomorphism under the evident orientability assumption.

If X is an H-space and f is an H-map, then Mf admits a product
Mf^Mf- Mf with two-sided unit (in the stable category). Here subtleties
begin to enter. If X is homotopy associative, it need not follow that Mf is
associative unless X and BO or BF admit associating homotopies compatible
under f. However, the homology Thom isomorphism commutes with products
and so the relevant homology algebras will be associative even if Mf is not.
Lewis has determined the precise higher multiplicative structure present on Mf
when X is an n-fold loop space and f is an n-fold loop map, but we shall not
need anything so elaborate.
Mf is (-1)-connected, and o Mf is a cyclic group since Mf can be con-

structed to have a single zero cell. Iffis non-orientable, so thatf*(w 1) =fi 0, then
the zero cell extends over the Moore spectrum and oMf= Z2. Iff is both
non-orientable and an H-map, then . Mris a Z2 vector space and thus Mris
2-local.
Our purpose in this note is to give a simple proof of the following striking

theorem of Mark Mahowald [11].
THEOREM 1. There is a mapf: ’)2S3 (3) - BSF whose associated Thorn spec-

trum is the Eilenberg-Mac Lane spectrum K(Z, 0).
Here S3 (3) is the 3-connective cover ofS3. This is analogous to the following

earlier result of Mahowald [10, 4.5].
THEOREM 2. The Thorn spectrum associated to the second loop map

f/" f2S3 - BO determined by the non-trivial map rI" S - BO is the Eilenberg-
Mac Lane spectrum K(Z2, 0).
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Madsen and Milgram sketched [9, p. 49] and Priddy completed [15] an easy
proof of this result based on Kochman’s calculation of the homology opera-
tions of BO. We shall give at least as easy a proof, using only Steenrod opera-
tions and not homology operations, of the following more general result.

THEOREM 3. (i) The Thom spectrum associated to any H-map e2S3 -- BFwith non-zero first Stiefel-Whitney class is K(Z2, 0).
(ii) The Thorn spectrum associated to any H-map f2S3 (3) - BSF with non-

zero second Stiefel-Whitney class and non-zerofirst Wu class at each odd prime is

K(Z, 0).

We shall first prove Theorem 3 and then give its second part content by
constructing an H-map of the prescribed sort, thus completing the proof of
Theorem 1. We shall then comment on the bordism interpretation of these
results and shall conclude with some observations, again due to Mahowald,
about the Thomspectra obtained by restriction of f/to the two natural filtra-
tions of f2S3.

Let Z(p) denote the localization of Z at p. We shall prove the following
cohomological assertion.

THEOREM 4. (i) Let f "2S3 BF be an H-map with non-zero first Stiefel-
Whitney class. Then the Thorn class #: Mf- K(Z2, O) induces an isomorphism
on mod 2 cohomology.

(ii) Let f: ’)2S3(3)-* BSF be an H-map with non-zero second Stiefel-
Whitney class. Then the Thorn class l: Mf- K(Zt2), 0) induces an isomorphism
on rood 2 cohomology.

(iii) Let f: ’2S3(3) -* BSF be an H-map with non-zerofirst mod p Wu class,
p > 2. Then the Thorn class #: Mr--. K(Ztp). O) induces an isomorphism on rood p
cohomology.

Theorem 3 is an immediate consequence. Indeed, in (i), both spectra are
2-local of finite type and / is thus an equivalence. For the integral case,
l: Mf K(Z, 0) induces an isomorphism on integral homology and is thus an
equivalence if and only if : Mf K(Ztp), 0) induces an isomorphism on
mod p cohomology for each prime p.
The proof of Theorem 4 depends on the following observation, which is

already enough to imply that MO and MF, MSO at p 2, and MSF split as
wedges of Eilenberg-Mac Lane spectra. An argument like this was first noticed
by Peterson and Toda [14]. We write w for both the Stiefel-Whitney classes in
mod 2 cohomology and the Wu classes in mod p cohomology for p > 2.

LEMMA 5. (i) Let Py be the jth primitive basis element of the mod 2 Steenrod
algebra’thus P Sq and

P+I [Sq2k, P] if k_>l.
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Then, in H*MF for k > 1 and in H*MSF for k 2 2,
0 (W2k-PR 12 12 W -t- decomposables),

where 12 denotes the Thorn class in mod 2 cohomology.
(ii) Let Qi, >_ 0, and P,j >_ 1, be the standard primitive basis elements ofthe

rood p Steenrod algebra for p > 2" thus Qo fl, P p1,

QR + [PP, QR] for k >_ 0 and P+I [P, P] for k >_ 1.

Then, in H*MSF for k >_ 1 (and setting p(k)= 1 + p +."+ pk-1),
QR12 12 w ((--1)kflWp(k) + decomposables)

and

Pk# #W((-- 1)k+lWp(k) + decomposables),

where 12 denotes the Thorn class in rood p cohomology.

Proof With pi Sqi and QR and fl ignored, the argument to follow applies
verbatim in the case p 2. The Wu relations give

(a) Prflw =- (- 1)r(r, s(p 1) r 1 + e)flw+s mod decomposables.

In particular, a check of binomial coefficients yields

(b) PPJfleWp(k + 1)- pJ 0 if 1 e _< j _< k and PPJwpj + + p =- wvj_ +... + p if
l<_j<_k.

Using these facts, a simple induction on j gives

0(C) QjWpj+...+t =-- (-- 1)iflWp(k+X) and Pjwp+...+p (- 1)J+lwp(k+ 1) for
l<_j<_k.

Since P12 12 w w, the conclusion follows easily by use of induction on k, the
Cartan formula, the first congruence of (b) with j k, and the congruences of
(c) with j k.
The only further information we need to prove Theorem 4 is the structure of

H. f2S3 and H. fzS3 (3) as Hopf algebras over the Steenrod algebra.

PROPOSITION 6. (i) With mod 2 coefficients,

H, n2S3-- P{x,,ln >_ 0} and n, n2S3(3)-- p{x2o, x,,In >_ 1} c n, n2S3,
2n for n > 1 Thus x, iswhere Xo is thefundamental class ofH, S and x, Q x,_

a primitive element ofdeoree 2"+1 1 and

SqZ,,(x2,,) ,-,’2’+’ for n _> 1 and k _> O.

(ii) With rood p coefficients for p > 2,

H,fzs3 E{xnl n >_ 0} ( P{/x.I n _> 1}
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and
H, n2S3(3) E{x, n > 1} (R) P{Bx, n >_ 1},

where Xo is the fundamental class of H, S and x. Qp"-lx._ for n >_ 1. Thus
pkflx. is a primitive element ofdegree 2p" 1 e, P,x. Ofor n >_ 0 and k > O,

and
P,((flx.)) -(fix._ 1)pk/l for n > 2 and k > O.

Proof See [5, I Section 4 and III Section 3]. The only point in mentioning
the homology operations is that, via the Cartan formula and Nishida relations,
they make the primitivity and the assertions about the Steenrod operations
obvious.

ProofofTheorem 4. We have/*(a) a for a e A H*K(Z2, 0)in case (i)
or for a A/A H*K(Ztp, 0)in cases (ii)and (iii). In all cases, the domain
and range of * have the same finite dimension in each degree and #* is a
morphism of coalgebras, hence it suffices to prove that * is a monomorphism
on primitive elements.

(i) By Lemma 5, it suffices to show that f*w2k-1 is indecomposable in
H*"2S3 for all k > 1. Since x, is primitive,

Sq Sq2"-1w2. w2.+1-1 mod decomposables,
2n-1 2Sq, Sq, x, Xo, f, Xo 4: O, and the 2"-fold coproduct on w2. has the

summand w (R)...(R) w, we have, for n > 1, that

(f’w2.+1_ 1, x,) (f*Sq Sq2"- lw2,,
(wz.. Sq2,"-’’" Sq, f,

(f, Xo)
=1.

(ii) The argument here is the same as for (i), except that f,(x2o) 4:0 and the
summand w2 (R)’"(R) w2 of the 2"-l-fold coproduct on w2. now ensure the
non-triviality of the specified Kronecker bracket.

(iii) It suffices to show that f*flWptk) is indecomposable for e 0 or 1 and
k > 1. Since fix, is primitive,

p1 PP"-wp. =- Wptn+ 1) mod decomposables,
pn- )nP, P, x,+ (- 1 (x)P",f,x 4 O, and the p"-fold coproduct on Wp.

has the summand w (R) (R) wl, we have, for n > 0, that

-(f*flWpt,+l), x,+ 1) (f*Wpt, + 1), fix, +
(f,p1 pp.-lwp,, fix,+

(wp., PP,"- P, f, flx,+

--(-1)"(wp,, (f, flxl)p")
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Of course, the second loop map j f/: f2S3 -- BO ---, BF has non-trivial first
Stiefel-Whitney class, hence we have already proven Theorem 2. Since f2S3 (3)
and BSF are both torsion spaces of finite type, they are equivalent to the
product (and to the wedge)of their localizations at the various primes. Thus
any map f: f2S3 (3) BSF splits as the product over p of its localizations fp.
Further, fis an H-map if and only if each fp is. Therefore, to construct a global
mapf: f2S3 (3) ---, BSF with Thom spectrum K(Z, 0), we need only construct a
map gp: f2S3(3) BSF with suitable p-local properties for each prime p, as
we can then take fp to be the localization of gp at p. Clearly the composite

f2S3 (3 "2S3 BO BF

is a second loop map which lifts to a second loop map

#2" f2S3 (3) BSF

with non-trivial second Stiefel-Whitney class. We must still construct an
H-map gp" f2S3(3) BSF with non-trivial first mod p Wu class for each
prime p > 2.
The construction of gp is based on our version [6] of the stable splitting,

originally due to Snaith [18]"

"2S3 ’- C2 S1 ’-- V D2,q $1’ where D2,qS C2+, /r. S.
q>l

Here D2,1S S and D2,,S is (q- 1)-connected. In mod p homology, it is
clear from Proposition 6 and the filtration of C2S that ,D2,S 0 for
1 < q < p and that H,D2,,S H,M, where M denotes the Moore space
S2p-2 L.)p e2p- 1. Therefore (D2,qS1)p

_
0 for 1 < q < p and (D2,pS1)p M.

The splitting cited above is based on certain very explicit generalized James
maps j" C2 X - QD2,q X, where QX li__m fnEnX. We shall analyze the multi-

plicative properties of these maps in [3]. In particular, we shall define certain
products

QD2,rX x QD2,sX QD2,,.+sX

such that, up to homotopy, we shall have a formula of the form

j,(x -t- y)= E Jr(x)js(Y)
r+s=t

where the sums are specified in terms of the standard H-space structures on
C2 X and QD2,t X. When X is S (or any other odd dimensional sphere) and is
an odd prime p, the error terms vanish upon localization of the D2,,X and
D2,sX at p, because either 1 < r < p or 1 < s < p in each such term. Thus the
results of [3] will include the following.
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LEMMA 7. The composite
jp Q2

n:S3
_

C: S’ QD:,,S’ Q(D2,pS’)p - QMis an H-map, where is a localization of D2,pS at p.

The composite of Q2 jp and the natural second loop map fl2S3 (3) fl2S3
S to the compositefl2S3(3) QM. Sincej restricts on FC2is an H-map kp

of its projection onto D2,pS and the inclusion of the latter in QD2,,S, kpmaps
the span of {x, fix1} onto I,M I,QM. Let a" S2-2 BSF be a map of
mod p Hopf invariant one. (Thus is of order p and has non-trivial Hurewicz
image.) Then a extends over M, and there results a unique infinite loop map

" QMBSF which restricts on M to a given extension. Clearly
gp kp: "2S3 (3) BSF is an H-map with non-trivial first Wu class, and
this completes the proof of Theorem 1.
We close with some remarks on the bordism interpretation of these results.

Recall that 2S3 is equivalent to fg S2 and that, by [5, pp. 59 and 226], there is
SO f2oS2 C2S being equivalent to the clas-P homology equivalence 2 C2 -sifying space BB of the infinite braid group B. Clearly the restriction of

/7/. -2S3
__
BO to BBo has the same associated Thom spectrum as does f/, namely

K(Z2, 0). Making full use of May’s infinite loop space machinery, Cohen [4]
proved that this restriction is actually homotopic to the classifying map of the
composite of the natural homomorphismB --. E and the regular representa-
tion E -, O and thus obtained the following interesting sharpening of Thom’s
theorem on the representability of mod 2 homology classes.

THEOREM 8. Any rood 2 homology class of any space is the image of the
fundamental class ofa smooth compact manifold M such that the structural group
of the stable normal bundle ofM reduces to B.
Cohen [4] has begun the search for explicit examples of such manifolds, and

Sanderson [17] has given a detailed analysis of what the reduction (or braid
orientation) means geometrically. No such classical interpretation of the inte-
gral result is possible.

PROPOSITION 9. Let G be a topogical group (possibly discrete)and let
h" G--. SF be a continuous homomorphism of monoids. Then Qla 0 in the
rood p cohomology of the Thorn spectrum associated to Bh" BG -o BSF.

Proof. For g G, h(g) is a homeomorphism. Thus h factors through STop
In H*MSTop. Qlt 0 for dimensional reasons [5, p. 169].

All we can conclude is the following. The notion of a normal space is defined
in Quinn [16].
THEOREM 10. Any integral homology class of any space is the image of the

fundamental class ofan oriented normal space N such that the classifying map of
the stable normal spherical fibration of N factors through f: "2S3(3) -o BSF.
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In both theorems, the representation is unique up to the appropriate bord-
ism relation.

Finally, returning to the study of an H-mapf: f2S3 BF, note that we may
view f2S3 as either fMS2 or C2 S 1, where M is the James construction and C2
is the little cubes approximation [12] used above. MS2 and C2S are filtered
spaces, and there result two filtrations of2S3. The following results (forf= J0)
are due to Mahowald [11, 6.2.11] and [10, 4.1].

PROPOSITION 11. Letf be the restriction offto F2.i+ 1_ 1MS2. Then, in mod 2
homology,

H,Mf= P{{,[ 1 _<i _<j} c P{{,] >_ 1} A, H, Mf.

Proof. H, MS2= P{i2} and H,FMS2 is spanned by the iqe with q < k.
2Since x, in Proposition 6 suspends to t2, a glance at the Serre spectral sequence

shows that

H,F2.1+I_IMS2 P{xn[O
_

n <_j-- 1} P{x,[n _>0}= H,2S3.

Therefore H, Mf is a polynomial subalgebra of H, Mf, necessarily the one
specified in the statement.

PROPOSITION 12. Let f be the restriction off to FkC2 S1. Then, in mod 2
cohomology,

H*Mfk M(k) where M(k)= A/A{zSqi[ i> k}.

Proof. H, Fk C2 S is the subspace of H, C2S spanned by all monomials
X x such that ,q>_o 2qnq < k. By [1, 1.3], M(k) has as basis
q>0

{i(SqI)[Sq is admissible, I (i, i,), and il < k}.
A standard counting argument (compare [13, p. 160]) shows that H,FkC2S
and M(k) are Z2 vector spaces of the same finite dimension in each degree.
Since H, Fk C2 S - H, f2S2 is a monomorphism, Mfk Mf induces an epi-
morphism A= H*MfH*Mfk. Thus it only remains to show that
z(Sqi)#k 0 for > k, where #k is the Thom class ofH*Mfk. This was much the
easiest part of Mahowald’s original proof [10, p. 252].
Ralph Cohen [7] has recently proven that Mfk is equivalent to the Brown-

Gitler spectrum B(k) of [1].
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