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Introduction
In this paper, we describée the relationship between the cohomology of
certain function spaces and of Gelfand-Fuks cochomology to the cohomology of a
certain construction C(M, X) where M and X are compactly generated
Hausdorff spaces and where X has a non-degenerate base-point *, In
particular our work relates to the following problems:
c . 0
{1) Let £ M be the Lie algebra of compactly supported G~ vector
&
fields on a connected smooth manifold M and let H (;Ci/l be the continuous Lie
algebra cohomology of M; Gelfand-Fuks, A, Haefliger, R. Bott, P, Trauber
. *pc .
and others [3, 10, 11, 12, 13, 14, 22] have considered H ‘fM while Gelfand-

%
Fuks gave a spectral sequence abutting to H i;vl [10, 11, 13]. Those classes

Fek

1 -term are just given by Hq(G(M, Xy R) for a

in total degree q of the E
certain easily described space X, Since the Gelfand-Fuks spectral sequence
collapses if the rational Pontrjagin classes of M vanish [10, 11, 22], our
computations of H*C(M, X) (in sections 1 and 2) gives the Gelfand-Fuks
cohomology for a large class of manifolds. In general, we don't know

e
H C(M, X) in a closed form, but we give a spectral sequence abutting to it;

L %
the ingredients are (a) H M, (b)the dimensionof M, and (¢) H X. We

b3
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remark that in case M = IRn, these calculations specialize to H*(QnEnX; R)
{which is classicall)

(2) Let M be a smooth manifold and assume that M and X both have
Ynice" base-points, Let XM be the space of based maps froom M to X and
give XM the compactly generated topology obtained from the standard compact
open topology on a function space, | D. W. Anderson [1]and P, Trauber [22]
have described a spectral sequence abutting to H*(XM; R) where R is a
field, We give a global description of the E:*—term for certain nice manifolds
and where R is of characteristic zero, Our spectral sequence of section 2
here abuts to the Anderson-Trauber E:*-term in the cases where we don't give
specific global answers. Our techniques also give information in characteristic
4 0 and we include, in section 4, some conjectures about E:* and about
collapse results, The basic ingredient is H*C(M, X).

(3) By specializing to certain simpler function spaces, we can give more
complete results, In particular, let M bea smooth manifold, let +M’ denote
its tangent bundle, and let EM be the bundle obtained by forming the one-point
compactification of each fibre in M. Then D. McDuff considers the space of
sections of E  of degree k, say I‘k(M) [18]. We compute H*I"k(M) with
coefficients taken in a field of characteristic zero in case M = Sn or
M=V xR"” where V is a connected manifold. In general, we give a spectral
sequence converging to H*Fk(M). The basic ingredient is H*C(M, So)_

Remark: In characteristic zero {with field coefficients), it is likely
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that other methods involving minimal models would also be useful in the above
problems. However, our approach is quite general and works in characteristic
-+ 0 for various related problems. In addition, our methods relate back to an
interesting and useful geometric construction, C{M, X).

An outline of the paper is as follows: Section 1 gives the construction of
C(M, X) together with other pertinent geometric and algebraic facts. Section 2
describes the spectral sequence converging to H*C(M, X). Section 3 gives the
promised relationships to Gelfand-Fuks cochomology while section 4 is related
to the Anderson-Trauber spectral sequence and section 5 contains results on
H*l"k(M). Section 6 contains the proofs of some technical facts; one should
compare Theorem 1,1 given here with an analogous theorem of Barratt and
Eccles [2, Theorem 2.1]. In addition, the reader is referred to [7, 8, 9, 17]
for information on C(Rn, X) (which is Q= x up to weak homotopy type for
path-connected X).

We thank P, Trauber for his suggestions for this paper, The first
author also expresses deep thanks to Grace and Frank Ilchuk for their aid in

the preparation of this paper,
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§1. C(M, X) and its homology

In this section, we give the necessary prerequisites for our calculations,
We remark that all constructions are functorial on appropriate categories and
do not elaborate on this point, Details are in [8, 9].

Throughout this paper all spaces are compactly generated and Hausdorff,
X is assumed to be of finite type and to have a base-point * such that (X, *)
is an NDR pair, M is a connected m-dimensional manifold of finite type. In
addition all (co)homology groups are taken within field coefficients of characteristic
zero unless otherwise stated.

Given a rnanifald M, define the configuration space F(M, k) as the

k
subspace of M given by {(ml, cr ey mk) |1’r1.1 3 mj if i3 j}. Further define

oM, X)= || F(M, k) X Xk/::

kzO zk

where =~ denotes the equivalence relation generated by

((Yls s vy YJ): (Xll LECIL XJ)):((Y]', LEERE ] 91’ “ v ey YJ): (XI’ sy ?‘1, ooy XJ))

Fal
if ®, = * (a means delete a), and _J_J_ denctes disjoint union. Define a

filtration and topology on C(M, X) as follows. _]_I_F(M, i) x x7 maps to
r j=0 .
C(M, X) and F_C(M, X) denotes its image. 1] FM, j) x %) is given the
j=0
topology of the disjoint union and FrC(M, X} is given the quotient topology.

C(M, X) is given the topology of the union of the FrC(M, X). By convention,

F(M, 0) x x° = %, the base-point,
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In addition, let X[‘]] denote the j-fold smash product of X and observe

that Zj acts on X[‘]] by permuting coordinates. Define

D.(M, X) = F(M, j) x.. XS1/FEM, j) xo * .
j Z‘.J. Ej

Notice that C(M, X) and Dj(M, X) are generalizations of May's con-
struction CnX [17] and that C(Rn, X) is weakly homotopy equivalent to
n_n
Q X X if X is path-connected [8].
It is shown in [8] that C(M, X) splits stably into a wedge V/ D.(M, X)
i1
if X is path-connected, A more general homological result is true:

Theorem 1,1, If homology is taken with field coefficients of any

characteristic, then H*C(M, X} = H*>>/0Dj(M, X).

Remark 1.2, Theorem 1,1 is a generazlization of a result due to

Barratt-Eccles with M = lim r" [2, Theorem 2,1] and the results of
n
[7, I, §4] with M = R".

We want to give a global description of H*C(M, X) at least over a
field of characteristic zero. This seems difficult for arbitrary M (see
section 2), However if M = R" and X is path-connected, then C(Rn, X)
is weakly homotopy equivalent to Q"s"x [8]. Hence the precise calculations
which we give here should be regarded as enriched versions of H*QnEnX

and which are analogues of the algebraic constructions of [7, III, 2].

Analogous geometric motivation is given by the fact that C(M XIRn, X) is
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homotopy equivalent to an n-fold loop space if X 1is path-connected.

We state conditions on M which are (1) easily verifiable, and (2) give
a global description of H*C(M, X). These conditions reflect the requisite
formalism extracted from [7, III.12. 1(2) and 12, 4].

Here recall that H*F(Rm, k) is presented as an algebra by elements

A ,k>i>j>1 subjectto relations A, A =A (A -A ) for r<s ., With
1_] - - ir 1s 5% 18 ixr -
A

ji

% %*
requiring that ¢ A'j = Aci o and that ¢ be a morphism of algebras for
1 '

m .. . * m . < g
= (-1) Aij for i>j, the Ek-acnon on H F(R , k) is specified by

o« ):k. (See [7, 1II, 7,4 and 7.7] with the notational change given by

i+1,j J
Let D be a graded algebra and define

a . =Aij). Tke degrze of Ai. iz m-1.

B(m, k, D) = H FR™, k) ® D*/1

where I is the two sided ideal generated by

Aij(ll'1 sye 15l _Jlgen

k-j-1
175

for y ¢ D. Observe that B(m, k, D) is naturally an algebra and ipherits a

k

%
3. -action from the natural diagonal Ek-action on H F(Rn, kYD . B(m, k, D)

k
is filtered as follows, Define the weight of A @ v, ®... 8 Vi to be degree(A)

and set

FSB(m, k, D) = {x ¢ B(m, k, D)|weight(x) < s} .
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Clearly B(M, k, D) with the above filtration is a filtered algebra, the various
filtrations are preserved by the action of Ek, and hence the associated graded
E:B(m, k, D) is an algebra over Ek,

Remark: Since H*(F((Rm, k); 4} is torsion free [7, III. 6], we may
define the construction B{(m, k, D) and its natural filtration over a field of any
characteristic.

We say that an m-dimensional manifold M satisfies _Q.__j provided

(1) H*F(M, k) is additively isomorphic to B{m, k, H*M) and

(2) H*F(M, k) is filtered as an algebra over Ek such that the associated

graded algebra is isomorphic as an algebra over Zk to
* %
EOB(m, k, H M)

Example 1: V X R"” - {Q} satisfies @ if V is a connected manifold,

n>1, and Q is a discrete subset of V xR" i1l

Example 2: More generally a codimension zero subset of M X RrR"

satisfies UJ {41

There is an algebraic construction which corresponds to H*C(M, X)
in case M satisfies Q_j We give this construction before stating the
corresponding theorem.

Let Vi’ i=1, 2, be non-negatively graded vector spaces and o'nVi

be the n-fold suspension of Vi for ne 4, Let L(GnVZ) be the free graded
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Lie algebra on crnV2 for n> 0. Define
AL (V_, V
n( 1 2)
as the free commutative algebra on

-n n
® L
Vl o] (o Vz)

Recall that the square of an odd degree element is required to be zeroina
free commutative algebra in characteristic # 2.

We define a weight function w on V @ O'—nL(O'nVZ): First recall that

1
a basis for L(anvz) is given by the ''collection process' of P. Hall in terms

of the so-called basic commutators in addition to the elements
n n
[o %, o x]

where degree(crnx) is odd for x a basis element for Vz [15]. In the evident
way we think of such basis elements as given in terms of cnxl, coes ank,

x, ¢ V. and we (cavalierly) write such a basis element as [xl, AN ﬁ(] where

2

the interior brackets are arranged in some order (which we deliberately

ignore here). Then a typical basis element of V & O'—nL(O'nVZ) is given by

1

t=v1®[xl, e Xr]

for v1 a basis element of Vl' Define

w(t) = (n+1){r-1)
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Define wi{t+t') = max{w(t), w(t')}.
Observe that w extends in the usual way to a weight function on
ALn(Vl’ Vz) by requiring that w(xl-xz) = W(xl) + w(xz) for
x eV, ®c "L V.).
i 1 2

Filter ALn(vl’ VZ) by setting

F AL (V), V,) = {x ¢ AL (V, V,)|w(x) < s} .

Notice that
(o] Il( 1 ' 2) ( 1 2)

whaere A(V1 @ VZ) is the free commutative algebra on Vl * Vz.

Example 4; If Vz = H*(point), then ALn(Vl’ VZ) reduces to two cases

depending on the parity on n. Let € be a basis element for VZ' Then it is

easy to check that (a) LU‘“VZ consists of one element Gzne and (b) Le*! Vz

n+l

2 Zn+l
consists of two elements o ¢ and [o &

2n+l
ot e]. Hence

free commutative algebra on V1 @ Vz if n=2k and

ALn(Vl' VZ) = n
free commutative algebra on V1 ® H*S if n=2k+1 ,

We remark that if n = 2k, a typical element in ALn(Vl’ VZ) is

)e-,jZ for a, ¢ V.. We may identify in another way those elements of
i

(al...a 1

£

1 . .
ALn(Vl, Vz) spanned by (al..,af)s for fixed £, say TI' In particular,

assume that V_ in degree zero is the ground field R and let JVl be the

1
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cokernel of the natural map Vl —> R which is an isomorphism in degree zero.
Let A(J’Vl) be the free commutative algebra on .]'Vl which is filtered by re-
quiring FrA(JVl) to be spanned by products of no more than r indecomposables,
Then it is easy to check that F!ZA(‘Tvl) is isomorphic to T.E’ Similar remarks

apply to the case n = 2k+l,

Theorem 1.2. If M is an m-manifold which satisfies (Lj. then there

is a homomorphism
¢ ALm-l(H*M’ H, X) —> H*C(M, X)
which is an isomorphism over a field of characteristic zero.

The proofs of Theorem 1.2 and the next theorem are given in [9]-
The only compact manifold, M, for which we have a reasonable
description of H*C(M, X) is M= Sn. Here, let i: !Rn — Sn be a fixed open

embedding.

Theorem 1.3, Let X be path-connected. Then
~%
H C(Sn, X) =T EL] ® Bn as a vector space where | is of degree n if n is

. % % n * n . L. .
odd and C(i, 1) :H C(S, X)— H C(R, X) is an injection on Bn.

*
Remark 1. 4: Bn is a submodule of H C(IRn, X) although it is not a
subalgebra. In particular 1 is notin Bn'

Remark 1.5: The coproduct in H*C(M, X) can be given in terms of
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the generators of Theorem 1,2, Hence we describe the cohomology algebra

of C(M, X); details are given in [9].
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* *
§2. Spectral sequences converging to H F(M, k) and H C(M, X)

In this section we give a spectral sequence abutting to H*(F(M, k); F)
where F is a field of any characteristic; appropriate modifications serve to
give a spectral sequence abutting to H*C(M, X) with field coefficients of
characteristic zero. We continue the convention of taking field
coefficients of characteristic zero unless otherwise stated. However, if a state-
ment is true over an arbitrary field, in this section we specifically write
coefficients taken in F where [ is assumed to be any field,

Our spectral sequence is the spectral sequence associated to an in-
creasing filtration on a cochain complex. For technical reasons, it is more
convenient for us to drop the usual conventions on differential bidegrees and
filtration degrees; in particular we agree that q denotes filtration degree in
D9,

Recall the algebra B(m, k, D}, its natural filtration, and its as sociated

graded algebra of section 1. To avoid duplicity of notation, we write

Gr Bim, k, p)P*9

for those classes concentrated in degree ptq of FqB(m, k, D)/Fq 1B(m, k, D),

m
Theorem 2,1, Let M be a connected manifold which is oriented with
[ coefficients and where H*(M; F) of finite type. Then there exists a

spectral sequence of algebras over Ek with
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* +
E‘l”q = Gr B(m, k, H (M; F)PTe

abutting to HF YF(M, k); F) as an algebra over .

Remarks 2.2: (a) dr has bidegree {r, l-r).

(b) E;1>,q = 0 unless q = (m-1)¢, 0< £ < k-1, Hence dr = 0 unless
r = 1{m-1).

EP9-0 ¢ 1)(k-1). H E e
(c) 1 = or g > (m-1)(k-1), ence (m-1)(k-1)42 ~ oo °
PyO ~ P K, .

(d) El = H (M ; F) and the edge homomorphism

Efl" s Ei’ ° c HP(F(M, k); F)

is the map HP(Mk; F)— Hp(F(M, k); F) induced by the natural inclusion
F(M, k) C Mk.

[e) Ecl)' 9. Hq(F(Rm, k); ') and the edge homomorphism
HYF (M, k); F) —> E:)' c E‘l’ 9

is the map induced by any open embedding [Rm C M.,

We also describe the first non-zero differential, dm. Let T(TM)
be the Thom space of the tangent bundle of M, Since M is oriented there is
a Thom class in Hm(T(TM); F). Hm(T(TM); F) = H (M x M, F(M, 2); F)
and there is the natural map Hm(M XM, F(M, 2); F) —> Hm(M X M; E'), Let
A (or AM) denote the image of the Thom class in Hm(M X M; F),

As an algebra, P9 s generated by H*(M; F) and the Aij' Since

1

*
the elements of H (M; F) are all infinite cycles, we need only define
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d By e B MY F).  Let £ MX—> M x M be defined by

J 1]
Spanier [21] p. 347 describes A for M compact. Let {bi} be a basis

*
fij(ml’ . rnk) = (mi, mj). Set Aij = fijA and we have: dmAi' = A, .,

% - ¥
for H (M; F) and let {bi} be the dual basis under the non-singular pairing

* -%
H (M; F)® H (M; F) —> F given by cup product evaluated on the fundamental
e, |

*
class. Then A=3x(-1) b, X b, e HT (M X M; F).
1

Remarks 2.3: (1)If i : NC M is a codimension zero embedding

Lk
i AM = AN .
(2) AM =0 if M = VxR and hence if M C V X® is any open subset.
Now from [9] we have that the spectral sequence collapses if and only if
A = 0, Our condition 'C_)L_.) is clearly equivalent to the spectral sequence collapsing,

and so we get

Theorem 2.4. M satisfies (O if and only if A, = 0.

We remark that in [9], an analogous spectral sequence is given with
coefficients in a ring and for those M for which H*(M) is not necessarily
of finite type. The E1 term is slightly harder to write down and so we
defer the exposition of this spectral sequence to [9]. We also have an analogous
spectral sequence in case M is not orientable.

To obtain a spectral sequence abutting to H*C(M, X), we use the

*
spectral sequence of Theorem 2.1 to compute H Dj(M' X) and then appeal
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to Theorem 1.1, The spectral sequence given here works only in characteristic

zZero,

Recall that the Leray-Serre spectral sequence for a finite-
sheeted covering space collapses with characteristic zero coefficients,
We require a lemma. which is checked in section 6, Let Ek act on H*F(M, k)
via the natural action on F(M, k), let Zk act on (ﬁ*}()k by permuting factors
(with standard sign conventions), and let Zk act diagonally on the tensor

product of these last two modules.

Lemma 6.2, H%Dk(M, X) is isomorphic to the vector space of elements

% ~%_ _k
in H F(M, k) ® (H X) invariant under the Ek-action.

%
To describe the spectral sequence abutting to H Dk(M’ X), we first

filter
® ~% Kk
B(m, kx, H M) & (H X)

%
by the natural weight filtration obtained from that of B(m, k, H M). We then

obtain a spectral sequence with
* ~%_ k. pt
Ef;’q = Gr (B(m, k; H (M) @ (H X) L

E ~ k
converging to H (F(M, k)) ® (H X), This spectral sequence is a spectral
sequence of Zk -modules, Since the characteristic of our field G is zero,

all our modules are projective G[Ek]-modules, and we have a spectral
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sequence

.

sk * ~%_ k
E| (D (M, X)) = Gr (B(m, k; H (M) ® (H X))

z

converging to Hp+q(D (M, X)) where L k denotes the Ek—invariants in a

k

Ek—module L.
This spectral sequence has additional internal structure. Recall the

sk
spectral sequence Er (F(M, k) of Theorem 2.1, Define

s-mik [k, Ey

£P 45D (v, %) = (@0 Yrm, 1) 8 F

k

where (L) are the invariants in a Zk—module L.

sk
Remark; Consider Er (Dk(M' X)) of Theorem 2,4, Notice that
P4 p-s, qr S
M, X)) = M
E, (D (M, X)) = ZE (D, (M, X))

and our spectral sequence consequently decomposes as the direct sum of spectral

sequences one for each s,

* #
Since H C(M, X = H \/ D(M, X) by Theorem 1.1, we obtain a spectral
20
sequence {tri-graded! ) with

PP %cmM, x) =P T %D (M, X)) .
r k r k
Summing this up, we have

Theorem 2.5. Let M be an oriented connected m-dimensional manifold

of finite type. Let X be of finite type, There exists a spectral sequence (over
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a field of characteristic zero') with
s %
P 9. gr AL (1M, T x)PH?
1 q m-1
abutting to Hp+qC(M, X)., Moreover
T sEP ST oM, x) .
r s T

Remark 2, 6: dr = 0 unless r = (m-1)£+1, We have given an implicit
description of dm. Because of our method of summing the spectral sequences

for the Dk(M, X), we no longer have Ei’q = 0 for large q. The gains from

this method of amalgamation are: first, we can compute E};’ % in closed form;

T. 8,4 is Ep’ 4 of the Gelfand-Fuks and the Anderson-Trauber

second, r E 5

r+s=p ®

spectral sequences.

As a caveat to the reader we remark that our spectral sequence is a
second quadrant spectral sequence: i,e,, El;’ 9 -0 unless p< 0 and q> 0.

Remark 2.7: If X is path connected then the total degree lines are
bounded and the spectral sequence in 2, 5 actually converges. This case covers
most of our applications. Since the spectral sequence is just a sum of
convergent spectral sequences it does converge in some weak sense even if X
is not path-connected.

In addition, information on products in this spectral sequence and in

o
H G(M, X) is given in [9].
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§3. Gelfand-Fuks cohomology and its relation to C(M, X}

Let M be a connected smooth (paracompact) manifold without boundary,
Consider the smooth vector fields on M with compact support; these vector
fields have the natural structure of a topological Lie algebra denoted I«;/[ [10].

Gelfand and Fuks [10, 11, 12] amongst others [3, 13, 14] considered the

. . c *ofc . .
continuous Lie algebra cohomology of EEM' H M (with real coefficients),
k-
and gave a spectral sequence abutting to H of;]__ In this section, we show that
for certain spaces X depending on the dimension of M, Hq(C(M, X)) R) is
isomorphic as a vector space to the elements concentrated in total degree q of
X *o-f c
the Ez-term of the Gelfand-Fuks spectral sequence abutting to H M
The use of these observations is the following: For many manifolds M,
3% %%k

we know H C(M, X) and hence we know the Ez term of the Gelfand-Fuks
spectral sequence. If the rational Pontrjagin classes of M vanish, then the
spectral sequence collapses [10, 22]. Hence in these cases, we have the equation

*-PM *
H rfc = H (C(M, X);R). For example, in case M =an, then

#* Do
H /f =H (Qn):,nX; R} which is known classically [5].

As particular examples, we use the results of section 1 to compute

%*

H i:]’ where V satisfies (J and where the rational Pontrjagin classes of
* *
V wvanish. In addition, we describe H cfcn =H i 0’ The results here
s 5
should be compared to those of A, Haefliger [14], who obtains analogous
n n

results in case V=MXR and V=25,

We remark that the spectral sequence of section 2 abuts to the
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Ez-terrn of the Gelfand-Fuks spectral sequence because our spectral sequence

converges to H'vC(M, X); in addition, our spectral sequence is given solely
in terms of the dimension and cohomology of M, Furthermore, we shall see in
Theorem 3, 2 that Esz)' 9 of the Gelfand-Fuks spectral sequence is given by the

-8,8,4

h Ep -term of Theorem 2, 5,

5

We describe the Gelfand-Fuks spectral sequence; for the remainder of
this section all {co}homology groups are taken with real coefficients,

Our notations and definitions can be found in work of Gelfand-Fuks and

. * n
in work of A, Haefliger [10, 11, 12, 13]). Let H ofo(lR ) be the cohomology
of the Lie algebra of formal vector fields on IRn, Mk is the k-fold product of
k k
M, and Mk 1 is the subspace of M given by k-tuples of points in which at
k k

least two coordinates coincide, Let H:(M . Mk 1) denote the homology with

k k
infinite chains of the pair (M , I\/Lk 1); observe that the natural action of Zk

k k
on M given by permutation of coordinates passes to M and hence I

k-1 k
0 Kk k L.
acts naturally on H*(M s Mk 1). In addition, Ek acts on
q q
b H'e...eH"
ql+. .. +qk=q
qi>0

by interchanging factors together with the standard sign convention with
q.

q.
H'=H 1<fo((Rn). We give

q q
k _ k
z Hw(M,Mk1)®H18...®Hk
q,+t...+q, =q
1 k
qi>0
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the diagonal Ek-action where Zk acts on each factor as given above.

Theorem 3,1 (Gelfand-Fuks) [10, 11]. There exists a spectral sequence
. *of c . -P.q _. ; .
abutting to H M with E2 given as the vector space of elements invariant
under the Zk—action given above on
q q
k k
b2 Hw(M,Mk1)®H1®...®Hk
q1+. . ;-:)qk:q
9
summed over all k> 0,
q n
We remark that H ofo(tR. )= 0 for 0< q< 2n and that all products are
. * n,6o o, . . ¥
trivial {12], Hence H Jfo(!R. ) is isomorphic as an algebra to H & X for some

path-connected space X (which, for example, may be chosen as a wedge of

spheres)., We show

Theorem 3.2. Let M be an m-dimensional manifold and X as above.
Bk
Then the summand of E2 concentrated in degree q in Theorem 3,1 is
isomorphic to HqC(M, X). Moreover the Eg' 9_term of the Gelfand-Fuks

p-s, 5,9

spectral sequence is isomorphic to the % Eoo -term of the spectral sequence
s

of Theorem 2. 5.

Corollary 3.3, Let M be an m-dimensional manifold of finite type which

(1) has vanishing rational Pontrjagin classes and which (2) satisfies Q_.T Then

H L

124

C L
M
v I A HM, HX)
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Example: Since M =V X R’ satisfies (J, we obtain the Gelfand-Fuks
cohomology of V XRJ provided the rational Pontrjagin classes vanish, The

reader should compare these results with those of A, Haefliger [14, §3.3].

Example: If U is an open connected subspace of M = V X R’ with

H*U of finite type and vanishing rational Pontrjagin classes, then
Hf S =AL  (HU, T X
U m-1""%"7 Tk .
This improves a result of A, Haefliger [14, p. 519 Remarques].

~k *
Corollary 3.4, H L n is additively E[x] ® Bn with Bn CH of Cn
S R
and E[x] is an exterior algebra on a class of degree m if m is odd and a

class of degree 2m-1 if m is even,

LS
Note: Bn is not a subalgebra of H ofcn and the description of Bn
R

seems sufficiently messy to avoid giving it a good global description.

These results follow directly from our computations of H*C(M, X)
together with Theorems 3.1 and 3.2 and the requisite observations on
products, We now prove the key ingredient, Theorem 3,2,

To start, we state a lernma most conveniently proven in section 6,

. . * ~% Lk
Cbserve that Ek acts diagonally in a natural way on H F(M, k) @ (H X) .
(See section 2 for details.) We assume that X is of finite type (and of course

coefficients are taken in a field of characteristic zero),
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. %
Lemma 6.2. H D(M, k) is isomorphic to the vector space elements

* ~%_ _k
in H F(M, k) ® {H X) invariant under the natural action of Ek.

Proof of Theorem 3.2: We first apply the Lefschetz duality isomorphism

(4]

k
k-1

k

L: H::(M , Mllz ) PO M )

k k . . :
since (M , Mk 1) is orientable where dimension{M) = .
In addition, consider the isomorphism

q -n g.-n

q. . .
H 15&’00&“);1{ I Px -2 su' X

For any fixed integer k, using the above we define a map

q q
K
g : b H°°(M,Mkk1)®H1®...er
q1+...+qk=q

>

q,>0

q.-n q, -n
k-
— > H*PeM, k®H ' X®...8H" X

q,+...+q =q

1 qi>0k

by the formula

Ba®y ®... By,) = (-1 o(a) ® oy, ®... 8y,

k-1
where A =n X (k—i)|yi| (|x| is the degree of x).
i=1

{Remark: the sign (-l))\ comes from standard sign conventions when one
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commutes a graded homomorphism past a variable; here the homomorphisms
are o and the variables are the yj.)

Notice that 0 is certainly an isomorphism of vector spaces, In
addition, we claim that 8 is ):‘,k-equivaria.nt where Zk acts diagonally on the
right-hand vector space in the natural way, We check this in case k=2 and
leave the details in case k > 2 to the reader:

q q
Let a@x@yeH‘:(Mz, M?)@H '@ 2. Then

(i) 02 @ x B y) = (—l)nlx,L(a) ® o "x ® ¢ "y,
Let + be the non-trivial element in EZ. Then

nlx‘+(n+lxl)(n+|Y')TL(a) ® U-ny ® ¢ "x and

(ii) v6(a ® x B y) = {-1)
(iii) BoT(2a ®x O y) = (_1)“IV|+ | |(V)L(-ra) ® o "y ®0c "x.

To compare tI(a) and IL{ra), we recall that the Lefschetz duality isomorphism
is given by Lf{a) = u/a where u is the orientation class and that by [21,

pp. 287, 297]
[(+ % —r)*u]/a = -r*(u/-r*a) .

P
Since (Tt XT) u-= (-l)nu and T is of order 2, we have the formula
. n
(iv) TL(a) = (~-1) L{(va).

Comparing formulas (ii)-(iv) gives 18 = 61 and so 0 is an isomorphism

of Ek-modules .
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Consequently the elements in

x q q
> 1 (MK, M, 1)®H1®...®Hk
q1+...+qk=q
qi>0

invariant under Ek are isomorphic as vector spaces to those elements in

k
Hq‘Dk(M, X) of total degree nk-p + Z}(qi-n) = q-p by Lemma 6.2, Summing
1
* %
over k> 0 and observing that H C(M, X) =3y H D (M, X) if X is of finite

k>0

type (by Theorem 1. 1) finishes the proof of the additive structure.

A comparison of the definition of the Eg’ 9 term of the spectral sequence
of Theorem 3.1 with the definition of the }S:)Ez_s’ %'9 term of Theorem 2.5
finishes the proof.

Proofs of Corollaries 3, 3-3. 4:

By Theorem 3,2, we need only compute H*C(M, X) to compute the
E:*-term of the Gelfand-Fuks spectral sequence, This is done in section 1
for those "M which satisfy D__J or M = Sn.

Remark 6. 3. Gelfand-Fuks proved that their spectral sequence
abutting to H*:f l:f collapses if the rational Pontrjagin classes of M vanish
[11). There is an error in the proof. (See the proof below statement 2.3 on
p. 115 of the English translation of [11]. The translation is published by
Consultants Bureau, New York,} The statement in error is the following:

Consider the natural map
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q1+. . +qk=q

k
—> p> H,(M, M, }®@H ®.. 8H
q1+...+qk=q
>
q,>0
k

k k
induced by the map of pairs M —> (M , M

" 1). They assert that w_ is onto,

That this assertion is false is easily checked., (For example, let M = S3 and

k=2,)

A proof of the collapse result has been given by P, Trauber [22].
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§4. On the Anderson-Trauber spectral sequence

In this section assume that M™'is a smooth manifold without boundary,
M has a base-point *, and X is of finite type. ILet XM be the space of
based maps from M to X with compact support. XM is given the compactly
generated topology inherited from the standard compact open topology on XM.
D. W. Anderson [1] and P. Trauber [22] have givén a spectral sequence abutting
to H*XM with coefficients taken in any field. We assume that all (co)homology
groups in this section are taken with coefficients in this fixed field.

Set

k x. =% for some 1 or
D (M) =< (m

BRI mk)eM

1’ xj some i#j

Theorem 4,1 (Anderson-Trauber). Let dimension (M) < connectivity {(X),
. . ® oML P.q
Then there is a spectral sequence abutting to H (X ) with El equal to

£ 1 (€25, DY) o (H'X))
k>0 k

where Z‘,k acts in the natural way.
xk e
The reader should compare this E1 -term with the E2 of the
Gelfand-Fuks spectral sequence in section 3, In fact, using arguments similar

to those given in section 3, it can be shown that as a vector space

;% - £ HYPD (M-%, ¥) = H PoM-*, ¥)
2 k
S-r=q-p kZO
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. m P
where Y is a space suchthat H X Y = H X, Details of these last assertions

e
3K

will probably appear in work of D, W, Anderson and/or P, Trauber. In fact,
using these identifications together with Snaith's stable splitting of Q"5 x [8

or 18], Anderson observed that this spectral sequence must collapse for QnEnX
for path-connected X, Also the spectral sequence of Theorem 2,5 gives the

EI;' 9 term given in Theorem 4.1. Hence we are two spectral sequences away
from computing the cohomology of a function space; also recall that the El-term
reported in Theorem 2,5 is just given solely in terms of the cohomology and

dimensions of the relevant spaces,

Conjecture 1: H*(C(Ran.‘*, X); ') is a functor of the dimension of M,

the homology of M and the homology of X for any field F if n > 1,

Conjecture 2: C(M, X) is weakly homotopy equivalent to some function
n_n__ . n
space related to 2 X X if X is path-connected., Note that C(R , X) is

weakly equivalent to annX in that case,

Theorem 4,2, Let M-%* be an m-manifold which satisfies (_i_] and
M
consider the spectral sequence of Theorem 4,1 abutting to X (as described

in this section), If X is of finite tvpe, then additively

E

o
2

= AL (H M-%, H X)

Proof: Since the vector space of classes in total degree q in E2 of this

q

spectral sequence is isomorphic to H 'C{M-*, X), the result follows from
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Theorem 1, 2 of section 1.

Remark 4.3: In general, one again uses the spectral sequence of

ook

Theorem 2, 5 to compute the EZ

-term of the Anderson-Trauber spectral
sequence,

Remark 4. 4: The spectral sequence considered in this section arises

from a filtration given by P. Trauber of a bicomplex due to D. W. Anderson,
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§5. The homology of I‘k(M)

In this section, we relate our computations to the work of D. McDuff
[18] which we review in part. Assume that M is a smooth m-dimensional

manifold without boundary and let E be the space obtained from the tangent

M

bundle of M by forming the one-point compactification of each fibre in the
tangent bundle, EM is a fibre bundle over M with fibre Sm, Let I'(M) be
the space of cross-sections of EM with compact support, I'(M) has Z-

components; let I‘k(M) be the cross-sections of degree k, We recall McDuff's

results:

Theorem 5,1 [McDuff], Let M be a closed compact manifold. Then
there are maps F(M, k)/Ek—é Fk(M) which, for each n, induce isomorphisms

HnF(M, k)/Z)k —_— HnI‘k(M) when k is sufficiently large.
Theorem 5.2 [McDuff]. Let M be an open, paracompact manifold,
Then there are maps F(M, k)/}:}k —> I‘k(M) which induce an isomorphism

lim H F(M, k)/Z, =

K% pm H L M) .

k-

The sense in which the F{M, k)/)?,k form a directed system are given
in McDuff's paper [18)]. Also, it is observed there that if M is open, the
homotopy type of Fk(M) is independent of k.

We remark that there is a comparison between C{(M, X) and

rm) = || T (M), In particular
keZ
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cM, %)= || FM, k/Z, .
k>0

Hence McDuff's theorems can be thought of as a map F(M, k)/):)k —_— I"k(M)

giving a natural map
cM, s°)—> (M)

which is "trying' to be a group completion in homology. (By a theorem originally
proven in {6] and [18], this last statement is true for M = R™.) If M satisfies
our axioms for U}, then this is the essential content of our next theorem

although we do not know how to prove an analogue for arbitrary M,

Theorem 5.3. Let M be an m-dimensional manifold of finite type which

satisfies UJ. With coefficients in any field R of characteristic zere,

—

H,I'(M) = R[Z] @Km (M)

-1
where R[Z] is the group ring of 2 and

P~

free commmntative algebra on H*M if m is odd, and

A (M) =
m-1 free commutative algebra on H M @ H*Srn_1 if m is even,

In case M = Sm, we have

Proposition 5, 4. With coefficients takenin a field of characteristic

zero,
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H S if m is odd and

m ~
HFS , k)/Z, =
* k H_Lszm_lif m is even .

o

Hence H*I’kSrn is the homology of a sphere for * depending on k (as in

Theorem 5, 1),

Proof of Theorem 5. 3:

Recall from Theorem 1.2 that
H Cc(M, %) - AL H M, HS°
% ) ) = m-l( b Hy )

if M satisfies Z_l:) It is easy to check that the directed system in Theorem

5.2

¢y HF(M, k)/Z, —>HF(M, k+l)/}3k+1

is given by ¢ (%) = x.e where ¢ is the non-zero class in ﬁJ_SO, Comparing
G with example 4 of section |, we see that

Lim H_F (M, k)/%

= k

is additively isomorphic to

~

{a) the free commutative algebra on H*M if m = 2k+1, and
(b) the free commutative algebra on E*M Q@ Hﬂ‘Sm'~l if m = 2k,
Since all components of Fk(M) are homotopy equivalent [18], Theorem

5,3 follows by summing over components,

The reader should compare the computation of b with the easily
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understood case of M = IRn. In [9], ¢* is studied in more detail,

Proof of Proposition 5, 4:

To compute H*F(Sn, k)/Z‘,k, we must only compute the elements in
* n . * n
H F(S, k) invariant under the Ek—actlon. We recall that H F(S ', k) is
presented in the following way [9]

n odd:

ES * *
H'F(S", K TH S ®@H F(R", k-1) as T, -algebra, The action of I

®n . * 1 ¥ n

on H & is trivial and the natural map H F(S , k) —H F(R , k-1) [given by
(xl, I Xk—l) —> (xl, e Xy w)] is Ek_l-equlvanant. {We do not
require the full action of Ek here to compute fixed points.)

n even:

* % -
H'F(s®, K= H s ® A as I,-algebra where A isa subalgebra
%
of H F(lR.n, k) invariant under the action of Ek. Furthermore, a basis for
the elements in An concentrated in degrees n-1 is given by AZlnAij with
¥

i>2 and k>i>j>1 [9). The ):}k action is that given on H F(Rn, k) in
section 1.

The computation of H*F(Sn, k)/Z‘,k is broken up into two cases.

ES
n odd: We first show that the elements in H F(IRn, k-1) f{fixed by
* n 3 n
>‘:,k are trivial, Since the natural map H F(R , k-1}) —>H F(S, k) is
sk
%, -eduivariant, it suifices to show that H F(R”, k-1)/%, | = {0} in
# n ~ e Fon

order to show that H F(S, k)/;:k =H S . But, by [7, Il 3, 3]

~ n . . P R 1 n ., <. . .
H*F(IR s k-l)/}:k_l is trivial if H*Q(k‘l)s is trivial, Since n is odd,
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this result is obvious. (See remark 3.15 of [7, I1].) Since H S* in H F(s", k)
is invariant under the action of Zk, the results for n odd follow,

n even: The method of proof here is similar to that given above. We
know that H*F([Rn, k)/):‘,k = I—I*Sn_1 if n is even, (See remark 3,15 of [7, III]
or for a direct calculation, see [7, II1§9].) Consequently, the only elements in

An fixed by Zk must iie in dim n-1, A basis for the elements in degree n-1

of An is given by

CA . c s
A21 ij,1>z,k21>j_>_l

3
Recall that the element in H F(R, k) fixed by I, is given by

¥ A, [7, p. 279]. It is trivial to check that ¥ A, , is not in the image of
k>i>j>l k>i>j>1

ok &
H F(Sn, k) —>H F(Rn, K) and that consequently, the only fixed points in An

are trivial, The result follows,
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§6, Proofs of some earlier assertions

We prove Theorem 1,1 and Lemma 6.2 in this section. Recall

Theorem 1,1, If homology is taken with field coefficients of any

characteristic, then H _C(M, X) = I—I*\/ Dj(M, X).
j>0

Notice that Theorem 1.1 follows directly from the geometric splitting in
[8, Theorem 1.1]if X is path-connected,

Proof of 1, 1:

To prove 1,1, notice that there is the standard spectral sequence con-
verging to H*C(M, X) obtained from the filtration of C(M, X) given in
section 1. The Ei* term of this spectral sequence is clearly isomorphic to

H*\/DJ,(M, X) since by [8, Lemma 4. 4]
L. .,
:Fj [ CM, X)——-J——>FjC(M, X)—leDj(M, X)

is a cofibre sequence, To show that the spectral sequence collapses (from

which Theorem 1.1 follows) it suffices to show that I.j is an injection in

homology. Since the natural quotient map p: Fj(M, iy x X —> Dj(M, X)
L.

J
factors through FjC(M, X), it suffices to prove

Lemma 6.1, p, 1is an epimorphism where homology is taken with any

field coefficients,

Proof: Let A be the subspace of X3 given by
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(CIPN xj)lsome x_ = *}. Then by [17, Appendix], (X, A) is an

equivariant NDR pair. Hence there is a cofibre sequence

F(M, )X

i . i_oep
E.A———>F(M, J)xz.x —>DJ,(M, X) .

J J

To prove 6.1, we show that i, is monic,

Notice that a basis for H*XJ is given by

S = {yl @... & Yj lyi runs over basis elements for H*X} Let eo be the

class of the base-point. Then we may partition § as
S=TUU

where y'l@.“ ®yje? if some y; = e and y1®,,. @yje-fl— if yi%eo

0

for all Y-

Let T (resp. U) be the vector subspace of I—I_,_KJ spanned by the

elements of T {resp. E)a Also observe that

H. G F(M, k) ®_. C.X“=H_(C.F(M, k) ®
¥k Zk ok £ % Ek

Notice that T and U are invariant under the action of Zj and that

(H*X)k) [16, Lemma 1.1}

H*A'E T as Ej -module. Clearly HJ‘XJ'E T@® U as Zj modules, Hence we

have a splitting

H X)) = H,(C F(M, j) O, (TOU) .
i j

H*(C*F(M, i) ®E

Consequently



1M1

H(F(M, j) X, X') = (H(CF(M, j) @ T) @ (H(CFM, j) &, U)
J ) J

But the natural map H*(A) —> T is an isomorphism of Zj-—modules and so i*
is an injection,

The proof of Lemma 6.2 is similar to that of Lemma 6,1, For the
evident reasons (see the proof}, we assume that homology is taken with field

coefficients of characteristic zero,

*
Lemma 6,2. H Dk(M’ X) is isomorphic to the vector space of elements

. n
in H'F(M, k) ® (H'X)" invariant under the natural action of Z,.

Proof: First recall that since X is of finite type, homology and co-

homology are dual, By the proof of 6.1,

H*Dj(M, X) = H*(C*F(M, 3} ®2j U) .

But in characteristic zero, it is clear that I—I*(C*F(M, i) 82 U) is just the

J
vector space of invariants in H*F(M, j} ® U under the action of Zj. But

U= (ﬁ*X)J asa I;-module. The result follows.
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