
Topology, Vol. 34, No. 3, pp. 56S574, 1995 
Copyright 0 1995 Elswicr Scienccl Ltd 

Printed in Great Britain. All rights reserved 
oo4&9383/95 f9.H) + 0.00 

0040-93?33(94)00035-2 

RIGIDITY OF FIBRATIONS OVER NONPOSITIVELY CURVED 
MANIFOLDS? 

C. B. HUGHES, L. R. TAYLOR and E. B. WILLIAMS 

(Receiued 12 August 1992; in revised form 17 June 1994) 

0. INTRODUCTION 

THE THEORY of manifold approximate fibrations is the correct bundle theory for topological 
manifolds and singular spaces. This theory plays the same role in the topological category 
as fiber bundle theory plays in the differentiable category and as block bundle theory plays 
in the piecewise linear category. For example, neighborhoods in topologically stratified 
spaces can be characterized and classified within the theory of manifold approximate 
fibrations (see [l 1,3]). 

This paper is concerned with manifold approximate fibrations over closed manifolds of 
nonpositive curvature. The main result is that this curvature assumption on the base space 
implies that such manifold approximate fibrations are rigid in the sense that if two manifold 
approximate fibrations over a manifold of nonpositive curvature are homotopy-theoret- 
ically equivalent, then they are equivalent in a much stronger, geometric way appropriate in 
this theory (they are controlled homeomorphic). 

Although we work within the setting of manifold approximate fibrations, our results 
also hold, and are new, for the more classical theories of fibrations and fiber bundle 
projections between manifolds. 

These results are established by working with the full moduli space of all manifold 
approximate fibrations over a closed manifold B of nonpositive curvature. We study 
a forgetful map from this moduli space which assigns to a manifold approximate fibratidn 
over B, the underlying map of a closed manifold to B. We call this map the forget control 
map for manifold approximate fibrations and show that it is homotopy-split injective. 

This paper is the second in a series dealing with controlled topology over manifolds of 
nonpositive curvature. In the first paper [8] we establish that the theory of controlled 
homeomorphisms coincides with the theory of bounded homeomorphisms over Hadamard 
manifolds. This point of view is extended in the present paper by showing that the theory of 
manifold approximate fibrations coincides with the theory of manifold bounded fibrations 
over Hadamard manifolds. We combine this finding with our classifying differential [6] to 
prove the homotopy injectivity of the forget control map mentioned above. 

In the future papers in this series [9, lo], we will show that the splitting of the forget 
control map for manifold approximate fibrations is compatible with various other construc- 
tions, such as taking the underlying Hurewicz fibration or taking the surgery-theoretic 

normal invariant. This will allow us to prove homotopy split injectivity for the forgetful 
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map on controlled homotopy-topological structures and prove generalized Novikov con- 
jectures (on the split injectivity of certain assembly maps). 

1. THE MAIN RESULTS 

Let B denote a metric space with a fixed metric. Recall the following definition. 

De$nition 1.1. If c > 0, then a map p : M -+ B is a c-jibration if for every commuting 
diagram 

X 
f 

----+M 

X0 1 JP 

Xx[O, l]F B 

thereisamap~:Xx[O,l]-tMsuchthat~JXxO=fandd(p~,’,)<c. 
If p: M + B is a c-fibration for some c > 0, then we say p is a bounded jibration. 

We assume that the reader is familiar with the basic properties of approximatejbrations 

as discussed in [6, Appendix]. In particular, if M and B are ANRs (as they always will be in 
this paper), then a map p: M -+ B is a c-fibration for every c > 0 if and only if p is an 
approximate fibration. 

A manifold approximate Jibration is a proper approximate fibration between manifolds 
without boundary. Important special cases to keep in mind are fibrations (i.e. maps with the 
homotopy lifting property for all spaces) and projection maps of locally trivial fiber bundles, 
as long as these maps are proper and have manifolds without boundary as domain and 
range. 

The appropriate notion of equivalence for manifold approximate fibrations is controlled 

homeomorphism (manifold approximate fibrations where classified up to controlled homeo- 
morphism in [6,7]). If p : M -+ B and q : N --t B are two maps, then a controlled homeomor- 

phism from p to q is a homeomorphism h: M x [0, 1) + N x [0, 1) such that h is fiber 
preserving over [0, l), and the compositions 

and 

Nx[O, 1)x Mx[O,~)~~‘~ -Bx[O, 1) 

continuously extend to maps 

and 
M x [0, l] -+ B x [0, l] 

N x [0, l] + B x [0, l] 

viapxid:Mxl+Bxlandqxid:Nxl -+ B x 1, respectively. When M is compact, this is 
equivalent to saying h defines a continuous family of homeomorphisms h,: M -+ N, 
0 < s < 1, such that qh, converges to p and ph; ’ converges to q as s converges to 1. 

Recall from [6] that if p: M + B and q : N + B are manifold approximate fibrations 
(with M and N closed and of dimension greater than or equal to 5), then the following are 
equivalent. 
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(1) p and 4 are controlled homeomorphic. 
(2) For every E > 0, there exists a homeomorphism h : M + N such that p is s-close to qh. 

(3) There exists a l-parameter family of manifold approximate fibrations connecting 
p and 4 in the sense that there is a map f: E + B x [0, l] such that the composition 

n:EABx[O, l]=[O, l] 

is a locally trivial fiber bundle, z-‘(O) = M, n-‘(l) = NJ= p over I3 x O,f= 4 over 
B x 1, andf ) : n- l(t) + B x t is a manifold approximate fibration for each t E [0, I]. 

For fibrations (or bundles) between closed manifolds without boundary there is a similar list 
of equivalences except that item (3) asserts the existence of a l-parameter family of fibrations 
(or bundles, respectively). 

If “rigidity” means homotopy information yields homeomorphism information, then we 
paraphrase the following statement by saying “manifold approximate fibrations over 
nonpositively curved manifolds are rigid”. 

THEOREM 1.2. Let B be a closed manifold of nonpositioe curvature and let M and N be 

closed manifolds of dimension 2 5. Then manifold approximate fibrations p: M + B and 

q : N -+ B are controlled homeomorphic if and only if there exists a homeomorphism h : M + N 
such that p is homotopic to qh. 

The following result is an immediate corollary of Theorem 1.2. 

COROLLARY 1.3. Let B be a closed manifold of nonpositive curvature. If p, q: M -+ B are 

homotopic manifold approximate jibrations and dim M 2 5, then p and q are controlled 
homeomorphic. 

In fact, Theorem 1.2 follows from a more general result concerning the moduli space of 
all manifold approximate fibrations over B. Before discussing that result, we first mention 
an application to an old problem. 

Soon after approximate fibrations were first defined, the following question was con- 
sidered. Suppose p : M + B is a manifold approximate fibration which is homotopic to the 
projection map of a locally trivial fiber bundle. When is p the uniform limit of a sequence of 
projection maps of locally trivial fiber bundles? When B = S’ and dim M 2 5, Husch [12] 
showed that the answer is “always”. On the other hand, Chapman and Ferry [l] gave 
counterexamples in the case B = S’. The following result substantially generalizes Husch’s 
theorem. 

COROLLARY 1.4. Let B be a closed manifold of nonpositioe curvature and let p : M + B be 
a manifold approximatejibration where dim M > 5. Then p can be approximated arbitrarily 

closely by bundle projections if and only if p is homotopic to a bundle projection. 

Proof: The “only if” statement is obvious. For the converse, suppose p is homotopic to 
a bundle projection q. Then Corollary 1.3 implies that there exists a controlled homeomor- 
phism h:Mx[O,l)+Mx[O,l) from p to q. It follows that qh,:M+B, 01s~ 1, are 
bundle projections converging to p as s converges to 1. n 

Steve Ferry conjectured some 10 years ago that Corollary 1.4 should hold true for B any 
closed aspherical manifold. We strengthen that conjecture as follows. 
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MAF RIGIDITY CONJECTURE. Let B be a closed aspherical manifold. Then manifold 

approximate jibrations p : M -+ B and q : N -+ B are controlled homeomorphic if and only if 

there is a homeomorphism h: M + N such that p is homotopic to qh. 

Thus, Theorem 1.2 verifies this conjecture in a special case. 

In order to describe our main result about spaces of manifold approximate fibrations 
from which Theorem 1.2 follows, we give some definitions. 

Fix a positive integer m and assume that B is a manifold without boundary, with a fixed 
metric. The simplicial set MAF( B) of maniJold approximateJibrations over B was defined in 
[6]. A k-simplex is a map p: M + B x Ak such that the composition 

is a fiber bundle projection with fibers m-dimensional manifolds without boundary, and for 
each t in Ak, p( : p- ‘(B x t) + B x t is manifold approximate fibration. Actually, in [6] we 
require M to be embedded in e, x B x Ak (as a set of “small capacity”) so that p is the 

restriction of the projection e2 x B x Ak --f B x Ak. We usually ignore this embedding prop- 
erty of the definition in this paper; the reader can easily supply the missing details. 

A k-simplex of the simplicial set Man(B) of m-manifolds over B consists of a proper map 
p: M + B x Ak such that the composition 

is a fiber bundle projection with fibers m-dimensional manifolds without boundary. (As 
above, M is embedded in e2 x B x Ak as a set of “small capacity” so that p is the restriction of 
the projection. Also as above, this embedding data usually will be ignored.) 

If B is a manifold, then cp : MAF(B) + Man(B) will denote the inclusion and we call 
cp the forget control map. 

We can now state our main result. 

THEOREM 1.5. Let B be a closed manifold of nonpositioe curvature and m 2 5. Then the 

forget control map rp: MAF(B) + Man(B) is homotopy-split injective. That is, there exists 
a simplicial map r: Man(B) + MAF(B) such that romp is homotopic to idMulAFtB,. 

Of course, the MAF Rigidity Conjecture can be globalized to state that Theorem 1.5 
should hold for B any closed aspherical manifold. 

In the special case B = S’, Hughes and Prassidis [4] relate the splitting map r of 
Theorem 1.5 to Siebenmann’s relaxation [13]. 

To see how Theorem 1.2 follows from Theorem 1.5 note that, under the hypothesis of 
Theorem 1.5, cp induces an injection cp:rr,MAF(B) + a0 Man(B) on components. There- 
fore, Theorem 1.2 is a consequence of the following description of rro-equivalence in these 
two simplicial sets. In this proposition, no curvature assumption is needed on B. 

PROPOSITION 1.6. Let B be a closed manifold and let p : M + B and q : N + B be vertices of 
Man(B) (i.e. p and q are maps of closed m-manifolds to B). 

(1) p and q are in the same component of Man(B) ifand only if there exists a homeomor- 
phism h: M + N such that p is homotopic to qh. 

(2) If p and q are mantfold approximateJibrations and m 2 5, then p and q are in the same 
component of MAF(B) if and only if there exists a controlled homeomorphism from p to q. 
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proof: For (1) suppose first that p and q are in the same component of Man(B). Then 

there exists a map f: E + B x [0, l] such that the composition off with the projection to 

[O,l] is a bundle projection rr:E+[O,l] such thatfin-‘(O)=p andfin-l(l)=q. Let 
H: M x [0, l] -P E be a trivialization of n such that HIM x 0 = id. Then 
h = H1 : M x 1 + z-l(l) = N is the desired homeomorphism. 

For the converse, the l-simplex in Man(B) connecting p and q comes from the mapping 
cylinder of h. 

The proof of (2) is given in [6, 7.121. n 

2. BOUNDED AND APPROXIMATE FIBRATIONS OVER HADAMARD MANIFOLDS 

In this section, we show that the space of manifold approximate fibrations over 
Euclidean space is homotopy-equivalent to the space of manifold bounded fibrations. 

Moreover, we show the same is true over an arbitrary Hadamard manifold. A Hudamurd 

manifold is a simply connected manifold with a complete metric of nonpositive curvature. 
This is consistent with the “bounded equals controlled over Hadamard manifolds” philos- 

ophy of [8-J. 
In the CW-complex (nonmanifold) case, there is a significant difference between approx- 

imate and bounded fibrations. This is discussed in [S] for R’. 
For a metric space B with a fixed metric and for a fixed integer m, the simplicial set 

MBF(B) of man$old bounded$brations over B is defined similarly to MAF(B) above, except 
now we only require 

pi:p-‘(Bxt)+Bxt 

to be a proper c-fibration for some c > 0 which is independent oft (but does depend on p). 
Note that MAF(B) and MBF(B) are both Kan and MBF(B) contains MAF(B). 

THEOREM 2.1. Ifm 2 5, then the inclusion MAF(R’) -P MBF(R’) is a homotopy equivu- 
lence. 

Proof: We will show that the relative homotopy groups nk(MBF(Ri), MAF(R’)) vanish. 
Let p : M + R’ x A’ represent a class in this group. For each t in Ak, let M, = p- 1 (R’ x t). 
Then there exists a c > 0 so that pt : M, + R’ is a c-fibration for each t in A’. Moreover, pt is 

an approximate fibration for each t in aAk. 
Choose K > 0 large and define 

so that 

y,:RixAk+RixAk, 01 t I), 

(i) yt is a homeomorphism fibered over Ak, 
(ii) y0 = id, 

(iii) yi(X, y) = (x/(1 - t + tK), y) if y is not too close to aAk, 
(iv) yt 1 R’ x aAk = id. If this is done correctly, then 

y,,zp:M+RixAk 

is an s-fibration for some small E > 0. 

It follows from [2] that there is a homotopy 
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so that g, is fibered over Ak, g1 is an approximate fibration and gtIp-l(Ri x 8Ak) = p. Then 
the concatenation of ylp and gr defines a map I: M x [0, l] + R’ x Ak x [0, l] such that 
I-1 M x 1 is a k-simplex in MAF(R’) which represents the same relative class as 
p=rlMxO. n 

Our next result is a bundle version of Theorem 2.1. This generalization (actually its 
Hadamard version; see Theorem 2.5 below) will be needed in the next section. For notation 
let p : E --* B be a locally trivial fiber bundle with fiber F and structure group G. We assume 
that F is a metric space and that G acts on F by isometries. 

A k-simplex of the simplicial set MBF(p: E + B) consists of a subset M of t2 x E x Ak 
(of “small capacity”) such that 

(i) the composition 

is a fiber bundle projection with fibers m-manifolds without boundary, 
(ii) the projection f: M -+ E x Ak has the property that for each (x, y) in B x Ak, the 

composition f-‘(p-‘(x)xy)Lp-‘(x)xy--S F is a manifold c-fibration for some 
c > 0 (independent of y). Here the homeomorphism p-‘(x) w F comes from a local 
trivialization of p: E + B. It does not matter which local trivialization is used because the 
transitions are isometries of F. 

The simplicial set MAF(p : E + B) is defined similarly, but now we require 
J-1 :f-‘(p-‘(x) x y) -+ p-‘(x) x y to be a manifold approximate fibration. 

THEOREM 2.2. If F = R’ (with the standard metric), m 2 5, and B is a polyhedron, then the 

inclusion MAF(p : E + B) + MBF(p : E + B) is a homotopy equivalence. 

Proof: Again we show that the relative homotopy groups vanish. Letf: M + E x Ak be 
a k-simplex of MBF(p: E + B) such that the part off lying over E x 8Ak comes from 
MAF(p: E -+ B). Assume that B is triangulated so fine that each simplex of B is contained in 
an open set over which p is trivial as a G-bundle. 

It is easy to modify f as in the proof of Theorem 2.1, by working inductively up 
the skeleta of B, to get a representative of the relative class of f which is in 
MAF(p: E + B). n 

For the remainder of this section, we let H be a Hadamard manifold of dimension i, we 
fix a point x0 in H and we let exp. R’ + H denote the exponential map at x,,. The proof of 
the next theorem is very similar to the proof of the Euclidean case (Theorem 2.1), so we only 
indicate the changes which need to be made. 

THEOREM 2.3. Zf m 2 5, then the inclusion MAF(H) + MBF(H) is a homotopy equiua- 

lence. 

Proof: If p: M -+ H is a manifold c-fibration for some c > 0, then the key step is to see 
how to deform p, through bounded fibrations, to an approximate fibration. In the Euclidean 
case we first took a radial shrinking and turned p into an .s-fibration, and then we used 
a general result (“sucking”) to deform the .s-fibration to an approximate fibration. The 
second part of this procedure fails in the non-Euclidean case. To apply “sucking” for an 
open non-Euclidean manifold like H we need to deform p, through bounded fibrations, to 
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a map which is a Q-fibration for some prescribed open cover 9 of H. But if such a % is 

given, as opposed to some E > 0, we need to be more careful about how we do the radial 
shrinking. 

Given i’u, then find a sequence (si}g I of positive numbers such that any map to 
H which is an si-fibration over B(x,, i)\b(x,, i - 2) for each i = 1,2, . . . , is a @-fibration 
over H. Moreover, assume that .sl 2 s2 2 s3 2 . . . . Now inductively assume that p is an 
ai-fibration over B(x,, i)\&xO, i - 2) for each i = 1 , . . . , k. Then perform a radial shrink 
which leaves B(xO, k - 1) fixed and takes &x0, L) to B(x,, k) for some L much larger than 
C/E~ + 1. Of course, when we speak of a radial shrink of H, we mean that we first apply exp- ‘, 
then do a radial shrink of R’, and finally, apply exp. Continue this process until p has been 
deformed to a @-fibration. n 

Since H is homeomorphic to R’, we have the following corollary of Theorems 2.1 and 2.3 
saying that the homotopy type of MBF(H) is independent of the metric on H (as long as the 
metric is complete and of nonpositive curvature). 

COROLLARY 2.4. If m 2 5, then MBF(R’) and MBF(H) are homotopy equivalent. 

The final result of this section is a Hadamard version of Theorem 2.2. The notation is as 
above so that p: E + B is a locally trivial fiber bundle whose structure group acts by 

isometries on the fiber. 

THEOREM 2.5. lf the jber of p: E --+ B is a Hadamard manifold H, m 2 5, and B is 
a polyhedron, then the inclusion MAF(p: E + B) + MBF(p: E + B) is a homotopy equiva- 
lence. 

The proof of Theorem 2.5 is not different from the proof of Theorem 2.2. 

3. SPLITTING THE FORGET CONTROL MAP 

Throughout this section, let B denote a closed i-manifold of nonpositive (sectional) 
curvature. Let u: H + B denote the universal covering of B and give H the (unique) 
Riemannian metric which makes u a Riemannian cover. Then H becomes a Hadamard 
manifold and the action of n,(B) on H is by a discrete group of isometries of H. 

Now let rc: TB + B denote the tangent bundle of B and let exp: TB + B x B denote the 
exponential map; i.e. exp(u) = (x, exp,(o)) where x = rc(u) and exp,: T,B + B is the stan- 
dard exponential map at x. We assume that rc : TB + B has the structure of a fiber bundle 
with fiber H and structure group the isometry group of H (in fact, n,(B)). Moreover, we 
assume that if h,: H + T,B is a homeomorphism coming from a local trivialization, then 

H h, T,B 

commutes. 
From Section 2 we have a simplicial set MBF(x: TB --) B) associated with the bundle 

rr: TB + B. We emphasize that 7~: TB -+ B has fiber H and structure group ni( B) as 
discussed above. 
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We now want to discuss a differential 6 coming out of Man(B) which, on the image of cp, 
takes values in MBF(n : TB + B). To this end let M c e, x B x A’ be a k-simplex of Man( 8) 
and let p: M + B x Ak be the projection. Form the pull-back diagram 

- 

Y 

P - TBxAk 

id x p 
1 exp x id 

BxM - B x B x Ak. 

There is a natural way to think of n;i as a subset of e2 x TB x Ak (after replacing TB by 
the graph of exp). Moreover, the composition 

- B 
M-TBxA’. lrxid BxAk 

is equal to (pl x id)(exp x id)p = (pr x id)(id x p)e which is a bundle with m-manifold fibers 
(here p1 : B x B + B is first coordinate projection). Thus, p : n;i --t TB x Ak is a candidate for 
a k-simplex of MBF(rr : TB + B). However, the bounded fibration condition will not be 
satisfied in general. At any rate define 6(M) to be p: ti + TB x Ak. 

Let Man(B), denote the union of those components of Man(B) which meet the image of 
cp : MAF(B) + Man(B). By the Kan condition, every simplex in Man(B), is the face of some 
simplex in Man(B), which has a vertex in MAF( B). 

PROPOSITION 3.1. 6: Man(B), + MBF(rr : TB + B) is a simplicial map. 

Proof: We only need to check that 6, on Man(B),, takes values in MBF(rr : TB + B). To 
this end let M c e2 x B x Ak be a k-simplex of Man(B),. Let p : M + B x Ak be the projec- 
tion. By the remarks above, we can assume that one of the vertices is in MAF(B). Let 0 be 
a vertex in Ak such that p 1 :p-’ (B x 0) + B is a manifold approximate fibration. Let 
N=p-‘(BxO)andp,=pl:N+B. 

Let k: N x Ak + M be a homeomorphism which trivializes the bundle M + Ak so that 
klNxO=id. 

Consider the pull-back diagram 

<; 

d 
+ TBxA” 

idxpk 
1 exp x id 

BxNxAk - BxBxAk 

It suffices to show that there exists a c > 0 such that for each x in B and r in Ak, if 

A.&,) = Z-i (xx N x t) then 

is a c-fibration. This will be accomplished by constructing a c-homotopy from h; 1 j / to an 
approximate fibration. 

To this end let h,: B x N x Ak + B x B x Ak, 0 I s I 1, be the obvious homotopy from 
h,-, = id x pk to h, = id x p. x id (i.e. h,(x, y, t) = (x, projspk(y,(l - s)t), t)). 

Let h”, : A? + TB x Ak, 0 I s 5 1, be the unique homotopy covering h, such that Lo = p. 
Since 

id x p. x id 
lexpxid 

BxNxAk A BxBxAk 

commutes, it follows that h; is a Ak-family of manifold approximate fibrations. 
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Thus, it remains to see that the homotopy 

is a c-homotopy for some c > 0 independent of x and t. Observe that 

MC,,,, 
h; c h?i - TBxAk + TB x T,B 

1 h, 
1 1 1u 

XxNxt c BxNxAk ----+ BxBxAk --+ BxB * B 

commutes. Since N is compact the result will follow from the following lemma. n 

LEMMA 3.2. Let X be compact and let F: X x [0, 1] + B be a homotopy. Then there exists 
a c > 0 such that if CIJ : [0, l] + H is any path covering F I x x [0, l] for some x in X, then 

diam(w) < c. 

Proof. Choose 6 > 0 such that if w: [0, l] + H is any path with diam(uw) < 6, then 
diam(o) < 1. Choose q > 0 so that any two q-close maps into B are b-homotopic. Choose 
a finite subset {x1, . . . ,x,}ofXsuchthatforeachxinXthereexistsaniin{l, . . ..n}so 

that for every t in [0, 11, d(F(xiq t), F(x, t)) < q. 
For each i in (l,...,n}, let oj:[O,l]+H be some lift of Flxjx[O,l]. Let 

c = max{diam(oi)ji = 1, . . . , n} + 2. 

To see that c works, let o : [0, l] --* H cover F 1 x x [0, 11. Find i such that F I Xi x [0, l] is 
q-close to F Ix x [0, 11. Then there is a b-homotopy G from F Ixi x [0, l] to F Ix x [0, 11. 
Lift this homotopy to G”, a homotopy from o to some translate of Oi, say TWi, where 
TE nl( B) c Isom(H). Then 6 is a l-homotopy. Since diam( Tq) = diam(wi) I c - 2, it 
follows that diam(o) I c. n 

We are now ready for the main result of this section. 

Proof of Theorem 1.5. Recall that in [6] we constructed a differential 

d: MAF(B) -+ MAF(p, : 7B + B) 

where pi : 7B + B is a representative of the topological tangent microbundle, and proved 
that d is a homotopy equivalence. If one uses the exponential map to identify p1 : 7B + B 

with 7~: TB + B and uses Theorem 2.5 above, then one can construct a homotopy equiva- 
lence y : MAF(p, : zB -+ B) + MBF( rc : TB + B) which makes 

MAF(B) 5 MAF(p, :rB + B) 

‘PI 1; 
Man(B), A MBF( rc : TB --t B) 

commute. The theorem follows. n 
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