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In (4) we showed how to stably split certain spaces OX built up from a ' coefficient
system' ^ and a 'II-space' X. Via an approximation theorem relating particular
examples to loop spaces, there resulted stable splittings of Q.n~LnX for all n ^ 1 and
all (path) connected based spaces X.

In this short sequel to (4) we shall introduce and split a new construction CX. Via
an approximation theorem, there will result a stable splitting of the basepoint com-
ponent QJ Zn(X+) of Q.nI.n{X+) for all w ̂  2 and all connected X, where X+ denotes
the union of X and a disjoint basepoint. In the case n = oo and X + = S°, such a splitting
was announced by Kahn and Priddy(5), but details have not appeared (compare (6)).
The first author promised more such splittings in (2). In the case n = 2 and X+ = S°,
such a splitting is already obvious from the homotopy equivalence Q2*S3 ~ Qjj/S2 (and
a comparison between the old splitting of Q?83 and the new splitting of fig S2 will be
given in Proposition 3.3).

The methods here follow those of (4) in philosophy and in technical detail. For
coefficient systems ^ equipped with suitable maps %-*-%.+l and for II-spaces X, we
shall construct spaces _

For certain spaces Dq{^, X) equivalent to the cofibres of the maps

of the colimit system, we shall prove that CX splits homologically as the wedge of the
Dgi'tf, X) and that, if <& is S-free, this splitting is realized by a stable splitting of spaces.
The constructions are somewhat more delicate than in (4) since the requirements for a
well-behaved colimit system and for compatible James maps (as in Lemma 2-3 below)
tend to be in conflict with each other. The fussy details of Section 1 are designed to
arrange this precise compatibility.

We note the following example of our stable splitting theorem.

COROLLARY. Let G be any topological monoid. Then 5 (2^ J G) splits stably as the wedge
of the cofibres of the natural maps B(T,q_1 j G)^> B(I,g [ G).

When G is the trivial group, the resulting stable splitting of B~LX, and hence of
Q0S°, is the cited result of Kahn and Priddy. Analogous stable splittings of BO,
BU, and BSp have been given by Snaith (7).

1. Directed coefficient systems. The basic constructions of this paper depend on
coefficient systems with certain additional structure. We describe this structure and
give a number of examples and counterexamples here.
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Definition 1 1 . A coefficient system & (see (4), 1-3) is said to be directed if there are
subspaces «s^+1 of <&r+1 and maps %./.%->• s/r+1 for r > 0 which satisfy the following
properties.

(i) sfr+1 is a sub Sr-space of%+1 and the inclusion of •s^r+1T
ii n ... D ^+1^? in ^.+ 1

is a (T^S,.?"*! n • •• n TisSrr~
i«)-equivariant cofibration for all sequences

0 s£ ix < ... < i g < r,

where Sr <= 2 r + 1 is the subgroup fixing the last letter and r e 2 r + 1 is the cyclic permuta-
tion (1,2, ...,r + l).

(ii) Ar: %->sfT+1 is a 2r-equi variant homotopy equivalence and 0r Ar = 1 on %,
where <j>r: %+x->% is induced by the injection 0r: r->-r + 1 specified by <j>T{i) = i for
0 < i s£ r.

(iii) If 0): q -»• r + 1 is an ordered injection such that w(q) = r + 1, then the composite

% —'-*• %.+1 > ffg takes values in s/g.
A map g: <€ -*• <$' of directed coefficient systems is a map of coefficient systems such

t h a t g(s/r+1) <= stf'r+1 and g\r = A'rg for r ^ 0.

Remarks 1*2. By a result of Boardman and Vogt(l), 2-7 (p. 234), the cofibration
condition of (i) implies that the inclusion of J&r+12r+1 in %.+1 is a Sr+1-equivariant
cofibration, where . „ . . .

s / X = U J < T l

is the saturation of stfr+1 under the action of Sr+1. In turn, (i) is implied by the following
two conditions.

(i a) For c e J&r+1 and a e £r+i, c<r e J ^ + 1 if and only if <r e Sr.
(i6) The inclusion of s/r+1 in #r+1 is a Sr-equivariant cofibration.
The need for precisely these conditions will gradually become apparent. The s/r

are not really needed for our first example.

Example 1-3. Suppose "^: A - > ^ extends to a contravariant functor II -*•<% (see (4),
1-1—1-3). Let Ar: %->%+1 be induced by the projection A r : r + l - > r specified by
Ar(i) = i for 0 < i < r and Ar(r+ 1) = 0 and let j ^ + 1 be the image of Ar. Then (ii) and
(iii) hold trivially and only the cofibration condition of (i) need be assumed. Since II is
isomorphic to its own opposite, any Il-space (see (4), 1-8) thus gives a directed co-
efficient system. The operads ^ and Jf are other such examples.

The s#r are less obvious in the following example.

Example 1-4. Let Y be a space which contains a copy of R x Z, where R is the real
numbers and Z is a non-degenerately based space. Assume the following.

(a) There is a map p: Y^-R which restricts to the projection on RxZ; this holds,
for example, if the inclusion R x Z-> Y is a cofibration.

(6) (Z,+) admits a representation as an NDR-pair by maps k: IxZ->Z&ndw.Z->I
such that R x tt;~a[0,1) is an open subset of Y.

Then the configuration space coefficient system ^(Y) of (5), 1-6, is directed. In
particular, ^(R x Z) is directed, naturally with respect to based injections of Z, and
^(M) is directed if M is an open (paracompact but not compact) PL manifold or an
open topological manifold of dimension other than four.
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Proof. Define

where, here and below, m = maxp^) ; define

Clearly <j>r Ar = 1 on F( Y, r), and a Sr-equivariant deformation d: 1 ~ A, <f>T on ̂ + 1 is

spec e y d(«,<yi, ...,yT, («,*)» = <^, ...,yr, (<-s< + s + sm,*)>.

This verifies (ii), and (iii) holds since if w: q -+ r + 1 satisfies co(q) = r + l , t h e n

which is in J ^ since . . ,. .
* m = ma,xp(yi) ^ max p(yM)-

Since (ia) obviously holds, it remains to show (ib). We do this by displaying

as a 2r-NDR-pair. Define a map 8: Y-*Iby

1 if y$RxZ

8(y) = • 2M;(Z) — 1 if y = (t, z) with w(z) ^ \

0 if y = (t,z) with w{z) < \.

The openness condition (6) ensures that 8is continuous. Define

h:IxF(Y,r+l)->F(Y,r+l) and u: F(Y,r+l)-+I

on points y = (ylt •••,yr,yr+i) with m = max

by h(s, y) = <y1(..., yr, j(s, m, yr+1)) and u(y) = w(m, i/r+1),

where j(s, m, yr+1) = yr+1 and f(w,yr+1) = 1 if yr+1$RxZ,

and where, if yr+1 = (t, z) with S(yr+1) = d,

(t,z) if t < m

(l-d)(« + ««-*m),
)) if TOi£<^m + !

and

if

if

2w{z)

if

if

if

or w(z) ̂  \

\ ^ < ^ m + 1 and

1 < < and M>(Z) <

Obviously A and u are Sr-equivariant, and it is easy to check that h(0, y) = y, h(a, y) —y
ifyes?r+1,h(l,y)es?r+1ifu(y) < 1 (this holding if and only if m + | < £ and u>(z) < |) ,
and tt-1(0) = s/r+1.
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The hypotheses on Y cannot be greatly weakened.

Counter-example 1-5. Let Y be a compact ANR. Then c€{ Y) cannot be directed.

Proof. Suppose we have s/x, s/2, and Ax: Y^-s/2 satisfying (ii) and (iii). The equi-
valence Ao: #„ = l*}-*-^ shows that s/x is contractible. We have

)<= YxY,

and we let ni: Y x Y -> Y be the projections. Clearly nx = (f>2, hence n1 Ax is the identity
on Y. Clearly n2 = w, where w: i ^ F , 2)-> Y is induced by the injection &t: 1 ->2 with
w(l) = 2, hence 77^! factors through s/x and is thus null homotopic. Moreover,
n2Xx. Y-+Y cannot have a fixed point since Ax does take values in F(Y,2). This
contradicts the Lefschetz fixed point theorem.

Other important examples also fail to be directed.

Counter-example 1-6. The little cubes operads # n cannot be directed. Indeed,
1: In->In is a point of #m>1, and the condition <f>x Ax = 1 on ^n x would force A1(l) to be
a pair of little cubes (1, c) with disjoint interiors, an obvious impossibility.

However, we do have the following closure property.

Example 1-7. The product of directed coefficient systems is directed. Since ^(R0) is
directed, by Example 1-4, we can use products with <<!>(RX) just as in (4) to prove our
splitting theorems for arbitrary S-free directed coefficient systems once they are
known for separated directed systems (see (4), 5-2-5-4).

2. The general splitting theorems. We construct analogs CX and !><$>, X) of the
spaces CX and DqCi£,X.) introduced in (4), 2-1-2-3, and define the relevant James
splitting maps. The splitting theorems will then follow by the same pattern of argu-
ment as in (4). We assume given a directed coefficient system ^ and a Il-space X.

Definition 2-1. (i) With <f>r as in Definition 1-1 (ii), define

& = Ar x &: % x xrXr^%+l x ̂  Z r + 1 (r > 0).

Then define CX to be the colimit over r of the inclusions £P.
(ii) Define Da(<&, X), or DgX. for short, to be the quotient space

= (% x «-J
By Definition 1-1 (i) the inclusion of the saturation [s/q x <j>q_x Xg-1] Sg in ̂ q x Xq is

a 2g-equivariant cofibration, hence D9X is equivalent to the cofibre (or mapping
cone) of the inclusion of stfg x j- _t <j>q-XXq_x in ^ x j ^ X9. Since £g_j is the composite
of the latter inclusion and the equivalence

it follows that Dq X is equivalent to the cofibre (>££,_!.
Clearly CX and the DqX. are functors of # and X. We write them as CX and DqX

when X arises as in (4), 1-9, from a space X. We now give a variant of the generalized
James maps of (4), 4-2.
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Definition 2-2. Assume given a James system Z,v:
 c€T^-<€'m, m — (r — q,q), as in (4),

4-1 (where *€' need not be directed). Define maps

as follows. For r <q,jv is the trivial map. For r > q,

where {xjr^ is the set of ordered injections q -*• r in reverse lexicographic order and
where [cfc; fa1 x] denotes the image in 5,(^,X) of (a/r^t/r^x) in ^ x l , (see (4),
3-1). That J^ factors over Sr is immediate from the argument of (4), 4-2, applied to a
permutation 0: r->r .

The following lemma is crucial.

LEMMA. 2-3. The following diagram commutes for r > 0.

Thus, by passage to colimits, thejqr induce a map

Proof. The idea is to imitate the case <j> = <j>r: r->r-f 1 of the argument in (4), 4-2.
Let {fa} and {ŵ } be the ordered sets of ordered injections q -*• r and q-^r + 1. Then

and

Jar(c> *) = (£«r(c)' X [c^<; ft1 XU, m = (r-q, q),

h.r+i C(c, x) = ^9 > r + 1 A^c), X ( w^1^,.^!, n = (r +1 - q , q).

If o)j(q) — r + 1, then j > m, 0)j * <f>r x = 0 8 - 1 x' for some x' e Xg_1( and \{c) o)f e s/q by
Definition 1-1 (iii). Thus, for such j ,

f A—(C) (Of* (O-t (Dm X\ ^ • ^JL/j ,X.

If w (̂g) ^ r, then j ^ m and G^ = ^ r ^ . Here (jijx^>rx — ijrj^x as in (4), 3*2, while
Definition 1*1 (ii) and the definition ofa James system give

a n d (^,r+A

where ^r : in->-n is specified by tfr(k) = k for 0 < k < w. The desired equality follows
from the construction of C'DqX..
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Remarks 2-4. Recall that OX is denned in terms of maps ^ .x E Xr-»-CX. It is
immediate from Definition 1-1 (ii) that these maps pass to colimits to yield a filtration-
preserving quotient map G'X -*• CX. There are also evident quotient maps Dq X -> Dq X,
and it is obvious from the definitions that the following natural diagram commutes

CX -~C'DqX

CX •*• CDgX

It is now a simple matter to mimic the arguments of (4) to prove splitting theorems
for the spaces CX. As in propositions 3-5, 4-6, and 6-4 of (4), one first constructs
commutative diagrams of the following general form.

DrX

K

ir-\ _ \

C'N DqX) 7 ( V Dqx)
\8 = 1 /

Cn
•*• CDrX

Here i is the inclusion, the n are quotient maps, the kr are obtained by adding up the
James maps jq by use of H-space structures on CX for spaces X, and gr is a map
homotopic to the standard inclusion ij. Precisely as in (4), one then uses adjunctions
based on special properties of C to pass to diagrams featuring the desired splitting
maps h~r. In this way, one obtains the following four theorems, which are respective
analogs of Theorems 3-7, 4-10, 7-1, and 8-2 of (4). Moreover, the previous remarks
yield compatibility diagrams which show that the old splittings of CX are quotients
of the new splittings of CX.

For our first theorem, we take ^ = (S' = JK (directed as in Example 1-2).

THEOREM 2-4. For all H-spaces X, there are equivalences

r V S-D-M'.X) and ^
8=1 8>1

where D^Ji, X) = XJ<j>q_1 Xq_x. Moreover, k"T is the sum over q of restrictions of James-
Hopfmaps

For spaces X, such an equivalence between

and V
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can also be obtained by direct cofibration sequence arguments. Note that MX is just
the weak infinite product (all but finitely many coordinates of each point at the base-
point) of countably many copies of X.

For our second theorem, we take # ' = J/~.

THEOREM 2-5. For all directed coefficient systems <&, U-spaces X, and Abelian groups
G, there are isomorphisms

8*(%XxrXr;G)^ £e.(DaX;G) and Bm(CX;G) s S Q*(DqX;G).

These isomorphisms are natural in *€, X, and G and commute with Bockstein homo-
morphisms.

Consider <£ = JV (directed as in Example 1-2). For spaces X, Dq(yV, X) is the
quotient (Z9/S9)/(Z9-1/Ea_1) of unreduced symmetric products. Thus the theorem
implies Steenrod's isomorphisms (8)

) » ( v 8 v 9 i )
8=1

The analog for the reduced symmetric products FrNX was a consequence of (4), 4-10.
For our third theorem, we take # ' =

THEOREM 2-6. Assume that <£ is separated and directed and that 3Sq =
 <<Sq/Tiq embeds

in Btfor all q < r. For all Tl-spaces X, there is an equivalence

Z r r q
9=1

Moreover, kr is the sum over q of restrictions ofJames-Hopfmaps
hq: Z*CX->2*D9X.

For example, this applies to ^{Rn) with t taken to be the embedding dimension of the
braid space B(Rn,r); compare (4), 5-6-5-11.

For our last and main theorem, we use the methods specified at the beginning of
(4), § 8, with Qx X being the suspension spectrum associated to a based space X.

THEOREM 2-7. For all "Z-free directed coefficient systems *£ and all U-spaces X, there
are isomorphisms in the stable category

K- Q~VrXzrXr-+ V Q^DqX and £„: Q^CX^ V Q*D
« - l q>l

Moreover, kr is the sum over q of restrictions of stable James-Hopf maps

The hq and kr are natural with respect to maps of directed coefficient systems and maps
of Tl-spaces.

Remarks 2-8. The uniqueness results for the hq discussed in (4), 8-3 (i), also apply
here. As in (4), 8-3 (ii), if ^ is separated and &8q embeds in R*, then hq is the stabilization
of the unstable James-Hopf map hq: 2*CX-> 2*.D8 X.
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3. Special cases of the splitting theorem. We must still show how the results promised
in the introduction drop out of the general theory. For this, we write CX = C( Y, X)
and Dq X = Dq( Y, X) when tf = #( Y) for a suitahle space Y (directed as in Example
1-4), and we consider the case Y = Rn. Thus, for a based space X, C(Rn,X) is the
colimit of the spaces F(Rn, r) x E Xr and Dq(R

n, X) is equivalent to the cofibre of the
map

$,-!'. F(R*,q-l) x^X^+Fi^q) x^X*.

If G is a topological monoid, then S^ J G is the colimit of the monoids S9 f 0 (as
specified in (3), p. 51). Since F(R°°, q) is a contractible space with a free Enaction,

. q) x ^(BG)" ~ B(Lq j G) and C(i?» BG) s B(ZX j G).

Thus the corollary of the introduction is an immediate consequence of Theorem 2-7.
Finally, for the promised application to loop spaces, we exploit a space Cn(X+)

analogous to (but not of precisely the same form as) our present spaces CX, where
X+ is the union of X and a disjoint basepoint.

THEOREM 3-1. For n > 2 or n = oo and for all connected based spaces X, there is a
space Cn(X

+) and there are maps

C(Rn, X) J— Cn(X+) ̂  Q£ S»(X+)

such that g is a weak equivalence and an induces an isomorphism on integral homology.
Therefore g and an are stable equivalences.

Proof. Cn(X
+) is constructed in (3), p. 56, as the telescope of the spaces (€n r x Sf X

T

under the 'right translations'

specified by p(l) (c,x) = (y(c2;c, 1), (x,l)) for some fixed c2e
(Sn2. The homology

isomorphism an is given by (3), 1-5-10, when n = ooand by (3), 1-5-11, when 2 < n < oo.
For the latter, the case n = 1 would be awkward due to noncommutativity and the
present restriction to spaces of the form X+ for connected X is essential since if more
components were present the Browder operations of (3), III-1-2, would mix com-
ponents non-trivially. Since <€n may be viewed as acting on #(.Rn), by (4), 6-2, we may
define translations p(l) as above with #„ 9 replaced by ^( i^ .^ .The map g: (€n-*

(£{Rn')
of (4), 1-7, clearly induces an equivalence

Tel Vn r x - X'+Tel F(R*, r) x _ X',
/>d) ' />d)

and the natural map

Tel F(Rn, r) x j . Xr -> Colim F(Rn, r) x E XT

is a weak equivalence by a standard compactness of spheres argument. In view of
Definitions 2-1, we need only show that the maps A, and yr from Fi^R™, r) to F(Rn, r+1)
are Sr-equivariantly homotopic, where yr(c) is given by the action of c2 on (c, 0). Here
if c2 = (p, 6'), then b acts on the points of c eF(Rn, r) and b' acts on 0 6i2" = F(Rn, 1).
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By use of a homeomorphism R ^ (0,1), we find easily that yr may be taken as the
map which sends

<&,«!),...,(*„*,)> to ({b(t1),z1),...,(b(tr),zr),(l,O)),

where <Tei2, zieRn~1, OeR™-1 is taken as its basepoint, and 6: i2->( —oo,0) is an
increasing homeomorphism which, as a map into R, is homotopic to the identity
through increasing maps. Since A, sends

{{t1>Zl),...,{tT,zr)y to <(<1,z1),...,(*r,zr),(l +max *,,())>,

it is a simple exercise to construct the required homotopy.
Making use of (4), 1 -9 (iii) and 2-5, to handle parameter spaces, we deduce the

following analog of (4), 8-4.

COROLLARY 3-2. For all based spaces P and connected based spaces X and all n ^ 2
(including n = oo, when 0$ SCO(X+) is to be interpreted as Qo X+), there are isomorphisms
in the stable category

Qa(P A QJ S»(X+)) s QJ? A £(*» X)) -> V QJ? A Dg(R\ X)).

Moreover, these isomorphisms are compatible as n varies.
Of course, 8° = {1}+ and the corollary specializes to give a splitting of Do &n for all

n 3s 2. If t): 83->S2 is the Hopf map, then fi2^: £22£3->-Q§/S2 is clearly a homotopy
equivalence. The following result compares the stable splitting Q?83 ~ V Dq(R

2, S1)
of (4) with the stable splitting q

Q 2 £ 2 ~ \/Dg(R\{l})
8

obtained here.

PROPOSITION 3-3. Stably, D^+^R2, {1}) is trivial and the composite

is an equivalence for all q.

Proof. Since we are working stably, it suffices to prove that 3+ 52<?+1(i?
2, {1}) = 0

and that the displayed composite induces an isomorphism on mod p homology for
all primes p.

(i) p = 2. H+ W = P{xn\n Ss 0}, where z0 is the fundamental class of H+ S1 and
xn = Q 2 X- i for n > 1. H* Qg52 = P{<|n > 0}, where z'o = Q1[l]*[~2] and

See (3). As a second loop map, Q,2v preserves operations. It therefore sends xn to x'n.
Since xn has filtration 2n in H* C2 S

1 while x'n has filtration 2"+1 in H* C2 8°, the desired
conclusions hold at the prime 2.

(ii)p> 2.
= E{xn\n > 0} ® P{/?a:n|7i > 1},
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where x0 is the fundamental class of 27, S1 and xn = Qvn~^xn_x for n > 1.

#„, Q§S* = E{xi\n > 0} ® P { / & > > 1},

where XQ = A1([l], [1])*[ — 2] and x'n = Q^^x^. See (3). Up to non-zero constant,
Q2^ sends xn to a;̂ . Again, xn has filtrationp71 in H^C^S1 while a;̂  has nitration 2pn in
2/*G2S<>.

REFERENCES

(1) BOABDMAN, J. M. and VOGT, R. M. Homotopy invariant algebraic structures on topological
spaces. Springer Lecture Notes in Mathematics, 347 (1973).

(2) COHEN, F. R. Splitting suspensions via self-maps. III. J. Math. 20 (1975), 336-347.
(3) COHEN, F. R., LADA, T. and MAY, J. P. The homology of iterated loop spaces. Springer Lecture

Notes in Mathematics, 533 (1976).
(4) COHEN, F. R . ,MAY, J. P. and TAYLOR, L. R. Splitting of certain spaces. CX. Math. Proc.

Cambridge Philos. Soc. 84 (1978), 465-496.
(5) KAHN, D. S. and PBIDDY, S. B. Applications of the transfer to stable homotopy theory.

Bull. Amer. Math. Soc. 78 (1972), 981-987.
(6) KAHN, D. S. and PBIDDY, S. B. The transfer and stable homotopy theory. Math. Proc.

Cambridge Philos. Soc. 83 (1978), 103-112.
(7) SNAITH, V. P. Algebraic cobordism and K-theory. Memoir Amer. Math. Soc. (to appear).
(8) STEENBOD, N. E. Cohomology operations and obstructions to extending continuous functions

Advances in Math. 8 (1972), 371-416.


