
Surgery Spaces: Formulae and Structure 

Laurence Taylor and Bruce Williams* 

In the Fall of 1977 it became clear to us that, in our work on 

local surgery, we could get better theorems if we had formulae for 

computing surgery obstructions of problems over closed manifolds. 

Wall's paper [9] had come out but there was rumored to be an error 

and the corrigendum [i0] had not yet appeared. 

It seemed philosophically clear that such formulae must be 

contained in Ranicki's work [5] and we set out to find them from 

this point of view. We were of course helped by the fact that Morgan 

and Sullivan had worked out the answer in the important special 

case of the trivial group [2], and by the belief that Wall [9] 

could not be too far off. ( He wasn't.) 

The formulae herein will contain no surprises for the experts 

but we hope that having them explicitly written out in the literature 

may prove useful to others. More surprising perhaps is that we 

completely determine the homotopy type of Ranicki's spaces aud 

spectra modulo our ignorance of their homotopy groups. There are 

geometric problems whose solution involves Ranicki's spaces, not 

just their homotopy groups, so the above analysis should be useful. 

As an example of this last statement, Quinn [4] has shown that 

the obstruction to deforming a map between manifolds to a block- 

bundle projection has a piece involving his spaces, which are 

* Both authors were partially supported by NSF Grant MCS76-07158. 
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homotopy equivalent to Ranicki's. 

The guiding principle behind this work is that all the deep 

mathematics should be pushed onto others: notably Ranicki [5], 

Morgan and Sullivan [2], and Brumfiel and Morgan [1]. What remains 

is, we hope, a pleasant, if energetic romp through the stable 

category which is nevertheless not devoid of interest. 

We conclude this section with our thanks to both John Morgan 

and Andrew Ranicki for conversations, correspondence, and preprints. 

§I. Statement of results. 

A s~mm~ry of the relevant part of Ranieki~s work is our first 

order of business. In §15 of [5], Ranicki constructs semi-simplical 

monoids Lm(A,e), Zm(A,e), and L~n(A,e) and related spectra ~°(A,e), 
A 

Lo(A,s) and L(A,e). The k-simplices of the monoids are just 

~ a-symmetric 
(m+k)-dimensional ~a-quadratic Poincar@ (k+2)-ads over A with 

! 
La-hyperquadratic 

some additional restrictions. 

To simplify the notation, let ~o denote ~°(Z,1); ~o denote 
A A 

Lo(Z,1); and ~ denote ~(Z,I). Further let L°(~) denote ~°(Z~,I); 

Lo(~) denote Lo(Z~,I); etc. 

Tensor product of chain complexes induces numerous pairings. 

The spectrum L ° becomes a commutative ring spectrum, and every other 
A 

spectrum LO(A,a), Lo(A,s), or ~(A,E) becomes a module spectrum over 
A A 

L °. The spectrum ~ is a commutative ring spectrum and ~(A,a) is a 
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module spectrum over it. 

There are also maps between these spectra. There is a symmeter- 
^ 

ization map (I+T): Lo(A,e) ~ L°(A,e) whose cofibre is I(A,e). The 

resulting long cofibration sequence is a sequence of I ° module 
A 

spectra. The map 1 ° ~ L is even a map of ring spectra. There is also 

a map of l ° module spectra es: I°(A,e) ~ 1o(A,e) which is given by 

tensor product with the even form of index 8 often denoted E 8. 

Ra~icki also defines two geometric maps: 

q*: MSTOP ~ ~o and Av: K(v,l) + ~°(v). 

The map ~* is a map of ring spectra and the map A gives the assembly 

maps: 

i) MSTOP ^ (K(~,:) +) °*^ %-i ° ^ i°(~) ~ 1°(~) 

induces the symmetric signature map, while 

ii) MSTOP ^ ~o ^ (K(v,l)+) 0-~-I^ Av---'L° ^ ~o ^ 1°(v) ~ to(v) 

induces the surgery obstruction. 

In particular, vi(Lo(V)) is the i th Wa&l surgery group for 

oriented problems with fundamental group v(for i~O); 1o is 

essentially Z × G/TOP; and the above map is the old Sullivan-Wall 

map ~.(G/TOP × K(v,i)) - L.(w) ([8] p.176, 13B.3). 

With these definitions fixed we can state our first theorem. 

Theorem A: The spectra ~°(A,~) and ~o(A,a) are generalized 

Eilenberg-MacLane spectra when localized at 2, and, when localized 

away from 2, are both boa o v Z1boA1 v Z2boA2 v ZSboA3 where boA. 
1 

denotes connective KO theory with coefficients in the group A i. In 
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o u r  c a s e ,  A i i s  vi(L°(A,e))®Z[~]. 
^ 

The spectrum 1(A,e) is a generalized Eilenberg-MacLane spectrum. 

While Theorem A is nice one should not read too much into it. It 

is true that the map A: K(v,l) + ~ 1°(v) is determined by some 

cohomology classes and some elements in K0-theory with coefficients, 

but this is not much use in understanding the assembly maps unless 

one knows the L ° module structure of 1°(v) and ~o(V). 

Since the assembly maps are basically unkown, we agree to 

write A, for any of the following maps: 

~(~o(~) ) 
(i.i) @ H._4i(v;Z ) • H. (~;Z/2) i (2) -(4i+i) ~ ~k2) 

(i.2) ~o. (i(~,i)) - ~.(~o(~))(odd) 

(1.3) ® H._4i(w;Z(2)) ~ H._(4i+2)(v;Z/2) -~ v.(~o(V)) (2) 
i 

(i.4) K0, (K(v, i) ) - v.(~.o (v))(odd) 

where 1.1 and 1.2 are induced from A v and the pairing ~° ^ ~°(v) ~ L°(v) 

~o and 1.3 and 1.4 are induced from A v and the pairing Lo ^ (v) ~ to(V) 

Given an oriented topological manifold M with Vl(M)= v, we wish 

to give a formula for the symmetric signature of M, ~*(M). We first 

fix some notation. 

We let Ze H4i(BSTOP;Z(2)) denote the class defined by Morgan and 
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Sullivan [2] §7. Let Ve H2i(BSTOP;Z/2) denote the total Wu class. 

Here and below we only list a typical group in which a graded 

cohomology class like £ or V lies. We have 

Theorem B. Let g: M ~ K(~,I) classify the universal cover, and 

let v: M ~ BSTOP classify the normal bundle. Then, at 2, we have 

(L.5) ~*(M)(2): A. g.(v*(~ + V SqlV) n [M] ) 

Away from 2 M has a bo-orientation and hence a fundamental 

class ~ .[M] K. We have 

(1.6) ~*(M)(o~d): A. g. [H]~. 

For the surgery obstruction we have the following formulae due 

to Wall [9]. 

Theorem C. Let g and v be as above, and let f: M ~ £o classify 

some surgery problem. Then 

(1.7) ~.(f)(2)= A. g. ((v*(£) U f*(~) + v*(£) U f*(k) + 

5*(v*(v sqlv) u f*(k))) n [~]), 

where 5* denotes the integral bockstein. Furthermore we have 

(1.8) ~*(f)(odd)= A. g. (f*(A) C-] [M]K ) 
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The classes ~ H4i(Lo;Z(2)) and kc H4i+2(Lo;Z/2) are defined below 

and A~ K00(Io;Z[~]) is the equivalence from Theorem A. 

Remark: Theorems B and C follow easily from 1.9 and 1.13 below. 

To actually carry out the proof of 1.5 and 1.7, one needs to 

remember that slant product gives the equivalence between 

wi(K(G,n ) ̂ X +) and Hn_i(X;G). The formulae follow from well-known 

properties of the cap, cup, and slant products. Formula 1.6 is a 

tautology and 1.8 follows from the naturality of the cap product. 

To prove our results we need to analyze L °, Io and the various 

maps and pairings between them. In §3 we shall construct cohomology 

classes L~ H4i(L°;Z(2)); re H4i+I(I°;Z/2); ~c H4i(Io;Z(2)); and 

k~ H4i+2(lo;Z/2) such that these classes exhibit I ° and 1o as 

generalized Eilenberg-MacLane spectra at 2. 

Moreover, the map 0*: MSTOP - 1 ° is determined at 2 by the 

formulae 

(1.9) O*(L)= £'U and ~*(r): (V sqlv)-u 

where U is the Thom class. 

The map (I+T): Lo - I ° is determined at 2 by the formulae 

(I.i0) (I+T)*(L): 8~ and (l+T)*(r)= O. 

The map es: ~° ~ Lo is determined at 2 by the formulae 

(i.ii) e8*(~)= L and es*(k)= O. 
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The ring map p: ~° ~° - L ° ^ is determined at 2 by the formulae 

(1.12) p*(L)= L a L and p*(r)= r ^ L + L ^ r. 

The module map m: L ° ^ Lo ~o is determined at 2 by 

( 1 . 1 3 )  m*(~)= L ^ ~ + 6 * ( r  ^ k) and  m*(k)= L ^ k .  

A A 

There remains the spectrum L. We have a map I - Z~o and so we 

get cohomology classes ~e H 4i+I ^ 4~+~ ^ (~;Z(2)) and Zk¢ H ~ ~(L;Z/2). There 

A H 4 i ( ^  Z/8 ) ~  ^ f i~± l 'A  A A 
are classes Le and re H .... (L;Z/2). The classes L, r, and 

a 
Zk exhibit ~ as a generalized Eilenberg-MacLane spectrum. Moreover 

we have the following formulae. 
^ 

The classes L and Z~ are related by ~8, the mod 8 bockstein, via 

A 

~8*(L)= Z~ 
A 

The map I ° - L is determined by the formulae 

A A 
(1.14) r ~ r ; L -~mod 8 reduction of L; and Ek -~ 0. 

A 

The map • ~E~o has been discussed. 
A A A A 

The pairing p: L ^ ~ ~ ~ is determined by the formulae 

(~.15) 

A A A A A A A A A A A A 

p*(L)= L ^ L+ i.(r ^Zk+ Zk A r); p*(r)= r ^ L+ L A r ; 

A A A A A A 

p*(Y.k)= Zk ^ L + L ^ Zk ; and p*(Y.~)= E~ ^ L + L ^ Z~ 

where i: Z/2 ~ Z/8 is monic. 
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A 

Ranicki's hyperquadratic signature map MSG ~ L is a map of ring 
^ 

spectra. We shall take care that our class L pulls back to the 

Brumfiel-Morgan [I] class in H4i(BSG;Z/8) times the Thom class. We 
A 

do not understand the pull backs of r, Z k, and Z~ although there are 

obvious guesses based on Brumfiel's and Morgan's work. 

The specfic formulae above yield some nice results on the 

surgery assembly map 1.3. It is clear that @ H._ (w;Z/2) 
i (~.2) 

~.(~o(~))(2 ) factors through the natural map ~.+I(L(~)) ~ v.(Lo(~)) 

and that there are commutative diagrams 

A 

• H.+l_4i(v~Z/8 ) ~ v.+l(1(v)) 

(1.16) I (~8). [ 

@ H*-4i(v; Z(2)) " v*(~°(v)) (2) 
a n d  

(1.17) 
@ H*-4iiv;Z(2))~- ~ v*(~°iV)es) ) .(2) 

The first diagram follows from 1.15; the second from i.ii. 

If ~ is a finite group whose 2 Sylow group is abelian or 

generalized quaternion, Stein [6] shows that the map 

@H._4i(v;Z(2)) ~ v.((7))(2) - v.(1o(V))(2 ) is trivial. Hence 

Corollary (Stein[6]): If ~ is a finite group whose 2 Sylow 

group is abelian or generalized quaternion, then, for the surgery 

assembly map, we have 

@ H._4i(~;Z(2)) ~ ~.(Lo(~))(2) is trivial. 
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In particular, a surgery problem over a closed manifold M with 

~I(M)= ~ as in the corollary is solvable if its index obstruction is 

zero and if the associated Kervaire classes k4i+2 are zero. This is 

related to some results of Morgan and Pardon [3]. 

We conclude this section with a remark on notation. Henceforth 

we will suppress Thom classes in our formulae and write 1.9 for 

example as ~*(L)= £, etc. 

§2. MS0-module spectra. 

An MS0-module spectrum is a spectrum, E, equipped with a 

map ~: MS0 ^ E ~ E such that 

(2.1) the composite S ° ^ E- u^i ~MS0 a E ~ ,E 

is the identity, where u: S ° ~ MS0 is the unit, and 

(2.2) the diagram MS0 ^ MS0 ^ E- I^~ ,MS0^E 

I mAl ]~ 

MS0~ E ~ ~MS0 

commutes, where m: MS0 ^ MS0 - MS0 is the multiplication. 

Such spectra are common. All of the Ranicki spectra 

discused in §l and bordism theories like MSTOP are examples. Our 

first result is a proof of 

Theorem A(2): Any module spectrum over MS0 becomes a 

generalized Eilenberg-MacLane spectrum after localizing at 2. 

Proof: Let E denote the spectrum in question, and let 

K(v,Er2~)~ / be a product of Eilenberg-MacLane spectra such that 
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~i(K(~.E (2)))=~i(E(2)). A map @: E ~ K(~.E (2)) determines a 

A 

homomorphism ~i: Hi(E;Z) ~ ~i(E(2) ) for each i, and conversely, any 

collection of such homomorphisms can be realized by some ~ (probably 

several). There are projection maps Pl" K(~.E ( )2 ) ~ K(~iE(2)'i) and 

the induced map Hi(E;Z ) ~* ,Hi~K(w.E (2));Z)----~i~-~Hi(K(viE(2),i);Z) 

^ 

is just ~i followed by the Hurewicz map. 

Now consider ~: MS0 ^ E ~ E. We can localize to get 

~(2): MS0(2)^ E ~ E(2 ) such that S ° h E ~ MS0(2)^ E ~ E(2 ) 

is the localization map. But u: S ° ~ MS0(2 ) factors as 

S ° ~ K(Z,0) ~ MS0(2 ) (since MS0(2)^ is a product of Eilenberg- 

MacLane spectra) so we get a map ~i: Hi(E;Z) ~ ~iE(2) such that the 
^ 

composite ~i(E) Hurewicz ,Hi(E;Z)_9_i_~iE(2) is localization. It is 

easy to see that any associated ~: E - K(~.E (2)) is a 2-local 

equivalence. // 

The next step in our understanding of the MS0-module spectrum 

E is to actually describe cohomology classes which give the 

equivalence between E and a generalized Eilenberg-MacLane spectrum. 

Morgan and Sullivan [2] have given a good way to describe 2-local 

cohomology classes of E: one gives homomorphisms with certain 

properties out of the bordism of E. Since the bordism of E is just 

the homotopy of MSO ^ E, one way is to give homomorphisms out of the 

homotopy groups of E and then use ~. This procedure gives the 

homomorphisms studied by Morgan and Sullivan and we wish to study 

it in general. 

A certain amount of finiteness seems necessary, so we say 
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that E has finite type if @ vi(E) is a finitely generated 
-~i~r 

group for each re Z. 

In what follows, R denotes either Z(2 ) or Z/2 j. Our basic 

data is a collection of homomorphisms YR: @ ~i(E;R) ~ R such that 

@~*(iJZ(2)) ~ i(2) 
(2.3) and 

@ ~.(E;Z/2 j) ~ Z/2 j 

commute. 

@ w-.(i; Z/2j 

@ w-.(E:/2 j+l) 

Z/2 j 

!/2j+ i 

The composites Y : @ ~ (MS0 a E;R)-A~@ ~.(E;R) YR-~R are 

compatible homc~orphisms in the Morgan-Sullivan sense. The require- 
merit that they be multi~licative with respect to the index may be 

phrased as follows. The composite 

~p(MS0;R) ® ~q(MS0^E;R ~ Vp+q(MS0^MS0^E;R). (m^l).~p+q(MS0^E;R) R 
~p(MS0;R) ® ~q(MSOAE;R) (Index)®Y*-*R ® R ~ R, is also the composite 

where Index : ~p(MS0;R) ~ R is just the mod R index homomorphism 

([2] p. 473). The particular form of our Y. permits us to get away 

with an apparently weaker statement. We have 

Proposition i: Suppose given an MS0-module spectrum E of 

finite type and a collection of homomorphisms YR: ~.(E;R) ~ R 

satisfying 2.3. Then, if 

W-p(MS0;R) i ~rq(E:R) (Index)®'~R, ,RiR 
(2.4) 

YR ~p+q (MSO ̂  ~,~ R)--a~--, ~p+ q (~,; R) ~}{ 
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commutes for all p,qe Z, we have a unique cohomology class 

re H (E;Z(2)) such that, for any ce ~.(MSO^E;R), the equation 

(2.5) ~R ~.(c) = <~^r,c> 

holds. 

The omitted proof follows easily from the work of Morgan 

and Sullivan [2] §4 and 2.2. 

There is also a mod 2 version of Proposition i. Given one 

homomorphism Y: ~,(E;Z/2) ~ Z/2 such that 2.4 commutes, we get a 

unique class re H (E;Z/2) such that 2.5 holds. Sullivan proves this 

in [7 ]. There is even a Z/2 r version in Brumfiel-Morgan [i]. We 

state it so as to require that the YR satisfy 2.3 and 2.4 for 

all Z/2 j with j ~ r. 

Addendum to Proposition I: Suppose YR: ~i (E;R) ~ R is zero 

for all R under consideration. Then diagram 2.4 shows that 

YR: ~i+4k (E;R) ~ R is also zero for all negative integers k. The 

proof that 7 is unique shows more. It shows that the components of 

in dimensions i+4k must be zero for all non-postive integers k. 

The classes that Morgan and Sullivan built by this method 

satisfy ~*(7) = £^7. Our next goal is to give a general explanation 

for this formula. Suppose that we have three MS0-module spectra, El, 

~i for i=1,2,3, of finite type, and three sets of homomorphisms 

Yi: ~,(Ei;R) ~ R i=1,2,3 satisfying 2.3 and 2.4. We get three classes 

ri~ i*(Ei;Z(2)) (or in i*(Ei;Z/2r)). 

With the above notation fixed, let us further suppose that 
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we have a pairing v: E 1A E 2 ~ E 3 such that 

MS0 a E 1 T MS0 a E 2 l%TA1 ~MS0 A MS0 ^ E 1A E 2 mAY ~MS0 T E 3 

(2.6) I ~lA~2 ~3 

E 1A E 2 v 'E 3 

commutes. Then we have 

Theorem i: The diagram 

Wp(E1;R) ® Wq(E2;R) -' Wp+q(E 1 A E2;R)- v*-*Trp+q(E3;R) 

i ~I ®Y 2 i Y3 
R ® R  ~R 

commutes for all p, qe Z and all R under consideration 

iff v*(v3)= vlkv2 

Remark: By applying the theorem to the map Si: MS0 A E i ~ E i 

one easily sees that Si*(Ti)= ~A7 i . 

This remark can be amplified slightly. Let xe H*(E;Z(2)) 

(or H*(E;Z/2r)) be any cohomology class. Then <x, >: v,(E;R) ~ R is 

a set of homomorphisms satisfying 2.3. If S*(x)= £ax, then they 

satisfy 2.4 as well, and the cohomology class determined by 

Proposition I is just x again. We have 

Corollary l:Given two classes Xl,X2~ H*(E;Z(2)) such that 

S*(xi)= ~AX i i=1,2, then Xl= x 2 iff <x I, >= <x 2, >: v,(E;R) ~ R. 
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Proof of Theorem i: See that the diagram commutes if 

v*(73)= 71a72 by using 2.1 to map E 1 ^ E 2 to MSO a E 1 ^ MSO ^ E 2 

and chasing the resulting diagrams. We concentrate on the converse. 

We begin by rephrasing lemma 7.1 ([2] p. 533) for spectra 

of finite type as 

Lemma i: Two sets of homomorphisms 

~i: ~.( MS0 A E 1 ^ E2;R) ~ R i=1,2 

satisfying 2.3 are equal if the composites 

~p(MSO AEz;~) ® ~q(MSO ^E2;R ) ~ ~p+q(~SO ^ E I ̂ HS0 AE2;R) 

- .-~p.q(MSO ^ ~l ̂  ~2 ;R) 

for all p,q~ Z and all R under consideration. 

) 

for i=1,2 are equal 

Using this result we proceed to use the uniqueness part of 

the Morgan-Sullivan description of cohomology classes. We must show 

that <~^v*(73),c>= ~^71A72, C> for all c~ ~.(MSOAEIAE2;R ) which, 

(i ̂T^I) (ci^c2) by the lemma above, are of the form c= (m^i^l). . 

So 
<~^v*(v3)'e> = <~^v3'(l^v)*(c)> = ~3 (~3)* (l^v). (c) by 2.5. 

Now (~3). (l^v). (c)= v. (~1^~2). (ci^c2) as a diagram 

chase using 2.6 shows. But Y3 of this is YI(Cl).Y2(c2) since our 

diagram commutes. We finish by showing <£aTla72, c>=- YI(Cl).Y2(c2) also. 

~^71^72, c>= ~^71^72, (m al ̂ i). (i AT^I). (ci^c2) > 

= ~ATiA~A~2, ClaC2> since m*£ = £ a£ 

=<£AVl,CI> <£^72, C2> = YI(CI)-~2(C2) by 2.5. // 
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When it works, the above discussion is quite satisfactory. 

There are however natural homomorphisms YR: v.(E;R) ~ R such as the 

deRham invariant or the surgery obstruction for which diagram 2.4 

fails to commute. A more general treatment seems necessary. 

We fix some class ~c H*(MSOAE;Z(2)) (or H*(MSOAE;Z/2r)) 

such that the homomorphisms YR ~. + < ~ ' >: v.(MS0 A E;R) ~ R are 

compatible and multiplicative with respect to the index. With this 

data fixed, and for E of finite type, we have 

Proposition 2: There exists a unique cohomology class 

~e H*(E;Z(2)) (or H*(E;Z/2r)) such that, for any ce v.(MSOAE;R) 

(2.7) <~^~,c>= YR S.(c) + <B,c> . 

Note that Proposition i follows from Proposition 2 using 

~=0, but we preferred to write out the easy, natural case first. 

We now need the analogue of Theorem i, so we return to our three 

spectra, E i, our pairing v, and our commutative diagram 2.6. Our 

homomorphisms Yi: ~.(Ei;R) ~ R satisfy 2.3 but not necessarily 

2.4. We have c l a s se s  ~ i  e H*(MSOAEi;Z(2)) (or H*(MSOAEi;Z/2r)) 

as in  P ropos i t i on  2. 

To complicate matters still further, the diagram in 

Theorem I will not commute in cases of interest to us. Hence we 

fix a class ~c H*(EIAE2;ZI2~)I J (or H*(EIAE2;Z/2r)) such that 
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Vp(EI;R) I ~i®~2 

R®R 
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Vp+q(El i E2;R) 

~3 v.( ) + <~, > 
R 

commutes. With all of these hypotheses we have 

Theorem 2: There exists a class ~c H*(EIAE2;Z(2)) 

(or H*(E I ̂  E2; Z/2 r) ) such that 

i) the mod R reductions of (I^TAI)* (reAl^l)* (IAV)*(~3) 

and £AZ1^~ 2 + ~IA£^Z 2 - ~i~2 + (~lA~2)*(~) + (1ATA1)*(£A£^~) 

evaluate the same on w.(MS0 ^E l AMS0 A E2;R) ; 

ii) v*(~3)= ~I ̂ 22 + ~ 

both hold. Either condition determines ~ uniquely. 

The analogue of Corollary i is 

Corollary 2: Given two cohomology classes x I, x2E H*(E;Z(2)) 

such that ~*(xi)= £AX i + ~ i=1,2, then 

Xl= x 2 iff <Xl, >=<x2, >: ~ (E;R) ~ R. 
@ 

Proof of Theorem 2: We begin with the uniqueness statement. 

Clearly ii) determines $ uniquely. The Morgan-Sullivan uniqueness 

result shows that condition i) can be satisfied by at most one ~. 

Let us define ~ so that condition ii) holds. Then we need 

to verify that i) is satisfied. By Lemma l, it suffices to do this 

for all c of the form c= Cl^C 2 , where ci~ ~.(MSO A El;R) 
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<(I^T^I)* (malAl) * (IAV)*(153), e> = <B 3, (IAV). (malal). (I^T^I).(C)> . 

This, by 2.7, is just 

<'£^~3' (l^v) * (m^l^l). ( IAT^I). (c) > -Y3 (b3) .( IAv ) .(m^iAl) .(I^T^I) .(C) = 

<g^£AV*~3'(IATAI)*(C)> - Y3 V. (~I^~2).(CI^C2) by 2.6. This in turn is 

<~^~i^~^~2, ei^c2> - ~i(cz),~2(c2) + <~,(~i^~2).(ci^e2)> + 

<(Z^T^l) * (~^~^~) ,ci^c2> 

by condition ii) and the definition of ~. 

This in its turn is equal, by 2.7, to 

<~^Zi^~^~2,ci^c2>- (<~^~1, ci>- <~i,ci>) (<~^~2, c2>- <B2,c2> ) + 

<~,(~i^~2).(ci^c2)> + <(i^T^l)* (~^~^ ~), ci^c2> 

Multiplying out and simplifying we get 

<~^~i#2 + 151^£^~ 2 - 151#2 + (~i^~2)*(~) + (Z^T^~)* (Z^~^~),cZ^c2> 

which really is what we wanted to get. // 

A 
§3. The spectra Z °, Io, and ~. at 2. 

The goal of this section is to use the techniques and 

results of the previous section to analyze the Ranicki spectra 

~o, ~,o and the maps p: ~°A ~o ~ ~o ; m : ~o^ ~,o ~ Io ; ~*: MSTOP ~ i ° 

(I+T): I.o ~ i ° ; and es: I ° ~ 1o 

The map p makes 1 ° into a ring spectrum, and the composite 

MS0 ~ MSTOP ~ I ° is a map of ring spectra. The map m makes Io into 

an I ° module spectrum, so I ° and ~.o (and indeed 1°(A,e) and 1o(A,e) ) 
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are all module spectra over MS0 so the theory in §2 applies. We let 

~o: MS0^Lo ~ ~o and ~o: MS0^~.o ~ ~,o denote the structure maps. 

We consider four homomorphisms. We have the index 

~.(~o) ~ Z(2) ; the deRham invariant ~.(~o) ~ Z/2; the surgery 

obstruction ~.(~.o) ~ Z(2); and the Kervaire invariant ~.(Io) ~ Z/2. 

By the universal coefficients theorem and a bit of luck, 

~4i(~,°;R) = ~4i(~ °) ® R and ~4i(~o;R) = ~4i(~,o) ® R. The two 

homomorphisms into Z(2 ) are zero unless . = 0 (mod 4) and extend 

uniquely to homomorphisms v.(~°;R) ~ R and v.(~.o;R) ~ R which are 

zero unless . = 0 (mod 4). Both homomorphisms satisfy 2.3. 

The index homomorphism satisfies 2.4. To see this, note 

that v.(MS0;R) ~ v.(L°;R) is onto except when .=i or 2. Proposition 

6.6 of Morgan-Sullivan [2] shows that diagram 2.4 commutes, at least 

if q is not 1 or 2. Since the map ~4(~.°;R) ® ~i(~.°;R) 

vi+4(L°^ ~°;R) P*-~vi+4(~ °;R) is an isomorphism by Ranicki [5] 

§ 7 , diagram 2.4 must commute even if q= l, or 2. Hence we get a 

unique class Le H4i(~°;Z(2)) satisfying 2.5. 

The Kervaire invariant v.(l.o;Z/2) ~ Z/2 is determined by the 

map v.(~.o) ~ Z/2 and does satisfy 2.4. For this, use the map 

constructed by Ranicki [5] (Proposition 15.5) from Z × G/TOP to the 

0 th space in the ~-spectrum for ~.o which is a homotopy equivalence. 

One can then use Sullivan's result [7] that the Kervaire invariant 

is multiplicative with respect to the index to see that diagram 2.4 

commutes. Let ke H4i+2(~ o;Z/2) denote the class promised by the 

mod 2 version of Proposition i. 
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The deRham invariant ~ (L°;Z/2) ~ Z/2 definitely does not 

satisfy 2.4. However, Morgan and Sullivan [2] (Proposition 6.6 and 

Lemma 8.2)show that "deRham" + ~V sqlv ̂  L, > is multiplicative with 

respect to the index (at least on ~.(MS0;Z/2) and we use our usual 

trick.) This requires that, under the map MS0 ~ I ° , L pulls back to 

~, but this is easy to see from Corollary I. Let re H4i+I(L°;Z/2) 

denote the class promised by the mod 2 version of Proposition 2. 

Finally, the surgery obstruction ~ (Lo;R) ~ R also does 

not satisfy 2.4. However "surgery obstruction" + (6(V sqlv^k), 

is multiplicative with respect to the index, where 5 denotes the 

bockstein associated to the exact sequence 0 ~ Z(2 ) ~ Z(2 ) ~ Z/2 ~ 0. 

This follows by the usual trick from Morgan-Sullivan [2], Proposition 

8.6. We let $~ H4i(~o;Z(2)) denote the class we get from Proposition 2. 

This completes the definitions of the four classes which 

exhibit ~° and ~o as generalized Eilenberg-MacLane spectra at 2. Our 

next task is to analyze Ranicki's maps. 

Proof of 1.9: We must show ~*(L)= £ and ~*(r)= V sqlv . 

Since Morgan and Sullivan used the homomorphism 

Lo Index ~ . (MS0^MSTOP;R)  ~ w.(MSTOP;R) ~ v . (  ;R) ~R 

t o  d e f i n e  £ ( [ 2 ]  §7) t h e  f i r s t  e q u a t i o n  i s  C o r o l l a r y  t .  The s e c o n d  

f o l l o w s  b y  a s i m i l a r  a r g u m e n t  p l u s  Lemma 8 . 2  o f  M o r g a n - S u l l i v a n  [ 2 ] .  

P r o o f  o f  1 . 1 1 :  We a r e  t o  show t h a t  e s * ( k ) =  0 and  e s * ( ~ ) =  L.  

Clearly the diagram ~.(io;z/2) (es). ~.(Lo;Z/2) 

O ~  ~Kervaire invariant 

z/2 

commutes, so Corollary i shows es*(k ) = O. Equally clearly 
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Index~~ ~ Surgery obstruction 

R 

commutes. Corollary 2 shows that es*(~ ) = L . 

An analogous argument shows that (I+T)*(L)= 8~ ; (l+T)*(r)= O, 

which is i. I0. 

Proof of 1.12: We want to show p*(L)= L^L and 

p*(r)= r ̂  L + L ̂  r . First check that diagram 2.6 commutes with 

E1 = E2 = E3 = ~o; v= p ; and ~i = ~° i=1,2,3. If we let each Yi be the 

index homomorphism, the trick that we used in showing diagram 2.4 

commuted for Y. also shows that the diagram in Theorem i commutes. 
l 

Hence p*(L)= L^L. 

To get the second equation, we let ~i be the index 

homomorphism and let Y2 and Y3 both be the deRham homomorphism. 

Then 61= 0 and 62= 63= (V sqlv) ^L . If we let ~= r^L, it is 

easy to check that the necessary diagram commutes, so Theorem 2 

applies. Alas we have not yet calculated (~i ̂ ~2 )*(~)" The correct 

answer is easy to guess: ~2*(L)= ~ ^L and ~l*(r)= £ ^r + (V sqlv) ^L. 

We accept this answer provisionally and proceed. If we take ~= r ̂  L 

it is a laborious calculation to see that i) is satisfied. Hence 

ii) also holds, so p*(r)= LAr + r^L. 

The maps ~i and ~2 above are both the map ~o: MS0^~° ~ I °. 

To justify the above calculations we must analyze this map. Let 

El= MS0, E2= E 3 = ~o; let Y= ~°; let Y'l be the index homomorphism. 

Theorem I applies, so (~°)*(L)= £^L. To get the other equation, 

change Y2 and ~3 to be the deRham homomorphlsm. Then 61= 0 and 
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62= 63= (V sqlv) AL. If we take ~= (V sqlv) AL then Theorem 2 

applies. If we take ~ = (V sqlv) A L we can calculate that i) is 

satisfied, so (~°)*(r)= ~^r + (V sqlv) ̂ L. 

This finishes the proof of 1.12. 

Proof of 1.13: To analyze the map m take El= L°; E2= E3= ~o; 

and v= m. The map ~i = ~o and ~2 = ~3 = ~o. Diagram 2.6 commutes. 

We always take Yl to be the index homomorphism. To show 

m*(k)= LAk, which is half of 1.13, let us take Y2 = Y3 to be the 

Kervaire invariant. The diagram in Theorem i commutes, so the result 

follows. 

To show m*(~)= LA~ + 5(rAk), which is the remainder of 

1.13, let us take Y2 = ~3 to be surgery obstruction. Then 61= 0 and 

62= ~3 = 5((V sqlv) ak). If we take ~= 6(rak), Theorem 2 is seen to 

apply. We have not yet calculated (~o)*(k) so we assume the correct 

answer, ~ A k. Then, with ~ = 5(r a k) the reader can check that 

condition i) of Theorem 2 is satisfied, so our result follows. 

To calculate (~o)*(k) we apply Theorem 1 with El= MSO ; 

E2= E3= lo; V = ~o; ~i = Index ; Y2 = ~3= Kervaire. 

A 
Our analysis of L is less satisfactory. We have a map of 

^ 
I ° module spectra ~ ~ ZZo so we have perfectly satisfactory 

classes Z~e H4i+l(~;Z(2)) and Eke H4i+3(~;Z/2) obtained by 

pulling back the suspensions of ~ and k respectively. If 
A A A A 
~: 1 ° ^ l  ~ ~ denotes the module pairing, we have ~*(Zk)= L A~k. 

A 
and ~*(Z~)= LAZ~ + 5(raZk ) . 
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^ 

The next step in understanding ~ is to construct the 
^ ^ 

classes L and r, b u t  t o  do t h i s  we n e e d  t o  u n d e r s t a n d  t h e  p a i r i n g  
^ 

Wp(L]R) ® Wq(L;R) - ~p+q(~  ^ t ; R )  " . This is 

accomplished as above except that we use the hyperquadratic 
^ 

s i g n a t u r e  map MSG ~ • and  t h e  r e s u l t s  o f  B r u m f i e l - M o r g a m  [ 1 ] .  
^ 

T h e r e  i s  a map I n d e x :  ~ 4 i ( L ; R )  ~ Z/8  ® R g i v e n  by t a k i n g  

t h e  i n d e x  o f  t h e  h y p e r q u a d r a t i c  fo rm a s s o c i a t e d  t o  t h e  e l e m e n t  i n  
^ 

~ 4 i ( ~ ; R ) .  B r u m f i e l  and  Morgan d e f i n e  an  i n d e x  homomorphism 

~4i(MSG;R) ~ Z/8 ® R. I t  i s  n o t  c l e a r  t h a t  t h e i r  homomorphism i s  
^ 

t h e  c o m p o s i t e  ~4i(MSG;B) ~ ~ 4 i ( l ; R )  ~ Z/8 ® R , b u t  i t  i s  t r u e  
A 

t h a t  we can  f i n d  a homomorphism ~: ~ 4 i ( L ; R )  ~ Z/8 ® R such  t h a t  t h e  
^ 

B r u m f i e l - M o r g a n  i n d e x  i s  ~4i(MSG;R) ~ ~ 4 i ( ~ ; R )  ~ ~ Z/8  ® R and  

such that w4i(~°;R) ~ ~4i(~;R) )Z/8 ® R is still the index 

reduced mod 8. 

The deRham invariant of a hyperquadratic form defines a 
A 

homomorphism ~4i+i(11Z/2) ~ Z/2 . 

The results of Brumfiel and Morgan [i] suffice to determine 
A ^ ^ 

the p a i r i n g  g p ( ~ ; R )  ® ~ q ( ~ ; R )  ~ ~9+q ( ~ ; R )  . From t h i s  i t  i s  e a s y  
A ^ 

t o  u n d e r s t a n d  t h e  p a i r i n g  ~ p ( L ° i B )  ® ~ q ( ~ ; R )  ~ ~p+q(L;B)  i n d u c e d  

by  t h e  modu le  s t r u c t u r e .  

One sees that ~ does not cause diagram 2.4 to commute, but 

that ~ + <V sqlv ^Ek, > is multiplicative with respect to the 
A 

index (essentially [i] Theorem 8.4). Let L denote the resulting 

cohomology class. 

Likewise the deRham homomorphism does not make diagram 2.4 
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i A 
commute, but by adding <V Sq V^L , > we do get a homomorphism 

that is multiplicative with respect to the index and so defines a 
^ 

class r. 
^ A ^ 

We can now use Theorem 2 to study ~ : MSOAI. , I . The 
A A A ~ ~) 

results are that (~)*(L)= £AL + I((V Sq ^Zk) where l:Z/2 ~ Z/8 

a ^ ^ sqlv is the non-trival map and (~)*(r)= £ar + (V ) ̂  . 

The class Zk can be defined using the only non-trival 
A 

homomorphism v4i+3(~;Z/2) - Z/2 . Theorem i can be applied to 
A 

show (~)* (Zk) :  ~ ^ Zk. 
A A A A 

Now apply Theorem 2 to study the map p: I^~ ~ • . 

Equations 1.14 and 1.15 should be clear. 

§4. Periodic~ connective bo-module spectra. 

We say that a connective spectrum E, which is a module 

spectrum over bo, is periodic if the maps 

~4(bo) ® ~q(E) ~ ~q+#(bo ^ E) ~ ~q+4(E) 

are isomorphisms for all non-negative q. 

Since I ° becomes bo after localization away from 2, one 

set of examples of connective, periodic bo-module spectra are the 

spectra I°(A,~) and ~o(A,e) after localizing away from 2. 

We have 



193 

Theorem A(odd): Let E be a connective, periodic bo-module 

spectrum. Then E(odd ) is equivalent to 

boa o v ZZboA1 v Z2boA 2 v ZSboAs 

where boA i is bo with coefficients Ai= ~i(E) ® Z[~] 

Proof: Since ~.(bo) is odd torsion free, the universal 

coefficients theorem says that ~.(boAi) = ~.(bo) ® A i . Let M(Ai) 

be the Moore spectrum whose only non-zero homology group is A i in 

dimension zero. Then boa i is just boa M(AI). 

We can map M(Ao) ~ E(odd ) so that, on ~0 ' the map is an 

isomorphism. Similarly, we can map ZiM(Ai) ~ E(odd ) so that, on 

~i ' the map is an isomorphism. 

Now periodicity shows that the composite 

bo ^ M(Ao) - 

induces an isomorphism on ~4i 

and all i. 

to ^ E(odd ) ~ E(odd ) 

and the zero map on ~4i+a for ~=1,2,3 

There is a similar statement for M(AI), M(A~), and for M(As). 

The theorem follows easily. 

Note added in proof: L. Jones has had a proof of Theorem A 

for Lo(Z~,~) for some years: see The non-simply connected 

characteristic variety theorem, Proc. Symp. Pure Math. Vol. 32 

Part I, 131 - 140. 
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