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More results in the M × R case
To describe the various Thom spaces which go into the
decomposition of ΣConf (M × R,S), begin by discussing
1-dimensional CW complexes. Given a finite set S , an ordered
1-complex Γ is a CW complex with vertex set S and a set of
edges E(Γ). Each edge is oriented and the set of edges is
ordered.
Given an edge e ∈ E(Γ) define Ae = As2,s1 where e starts at
vertex s1 and ends at vertex s2. Define AΓ = Ae1 · · ·Aek where
e1, . . . , ek are the edges of Γ in order. These conventions set up
a bĳection between products of the A’s and ordered
1-complexes. It can be shown that

AΓ 6= 0 if and only if H1(Γ) = 0.

Hence AΓ 6= 0 if and only if each path component of Γ is a tree
or a single vertex. If we continue the arboreal theme by calling
components with single vertices seeds, then AΓ 6= 0 if and only
if Γ is a forest.



The key to the proof of the previous result is the graphical
version of the three-term relation which can be described using
ordered 1-complexes. Say that a vertex s3 supports an incoming
three-term relation provided there are at least two edges which
have s3 as an incoming end. There may well be additional
vertices and edges which are not drawn in the picture.
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Draw a new edge from s1 to s2, provided e1 < e2, to get the
triangle on the next page.
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The three-term relation says that a combination of three
ordered 1-complexes is 0. They are obtained by combining the
three ways of deleting an edge from the triangle, and reordering
an edge or two.
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Theorem
Given a vertex which supports a three-term relation then for the
three graphs described above

H∗(Γ3) ∼= H∗(Γ2) ∼= H∗(Γ1)

A graph partitions its set of vertices by saying two are
equivalent if and only if they lie in the same path component.
All three graphs yield the same partition.

Proof.
s3

s2s1



Certain collections of ordered 1-complexes give a basis for
H ∗
(
Conf (Rn ,S) ; Z

)
. Clearly the ordered 1-complexes in a

basis must be a forest, but there are more forests than basis
elements whenever |S | > 2.
One basis is given by the admissible forests. To define when an
forest is admissible, it is first necessary to order S . Then we can
orient an edge by starting at the smaller vertex and going to
the larger. We can order the edges using lexicographical order.
A forest is admissible provided no vertex supports an incoming
three-term relation using the above orientations and ordering.

Theorem
If A(S) is the set of admissible forests on the ordered vertex set
S then the elements AΓ for all Γ ∈ A(S) are an additive basis
for H ∗

(
Conf (Rn ,S) ; Z

)
, n > 2.



For any forest Γ there is a diagonal

∆Γ : Xπ0(Γ) → XS

defined by
(
∆Γ(ι)

)
(s) = ι

(
[s]
)
where [s] ∈ π0(Γ) is the path

component of Γ containing s. If X is a manifold, let νγ be the
normal bundle of Xπ0(Γ) in XS . Note it is a sum of various
tangent bundles of X pulled back to Xπ0(Γ).
Let A(S) be a set of forests such that the collection AΓ,
Γ ∈ A(S) is a basis for H ∗

(
Conf (Rn ,S) ; Z

)
.

Then
ΣConf

(
M × R1,S

)
∼= ∨

Γ∈A(S)
ΣT (νΓ)

Remark: The admissible basis has an additional property that
there is an algorithm for writing any forest as a linear
combination of admissible forests.



The top representation

The sub-group of H ∗
(
Conf (Rn ,S) ; Z

)
generated by all AΓ with

the associated partition fixed form a subgroup of
H (n−1)(|S |−r)(Conf (Rn ,S)); Z) where r is number of path
components of Γ, which is also the number of elements in the
partition.
Hence the highest non-trivial cohomology group of Conf (Rn ,S)
is in dimension (n − 1)(|S | − 1). Classes AΓ in this dimension
come from forests which are connected and vice versa. From
this one sees that H ∗

(
Conf (Rn ,S) ; Z

)
is built up out of tensor

products of top dimensional groups for various subsets of S .

Example
Let S = {1, 2, 3, 4, 5} and let

{
{1, 2, 3}, {4, 5}

}
be a partition.

Then a summand of H 3(n−1)(Conf (Rn ,S) ; Z ) is a tensor
product of the top group for 3 points tensor the top group for 2
points.



The top representation (continued)
Recall every forest partitions the set S and by taking the
cardinality of each set in the partition, we get a partition of the
integer |S |. Given any two forests with the same integer
partition, there are permutations of S which take one to the
other.
Hence under the action of the symmetric group, the cohomology
decomposes into equivariant summands corresponding to
integer partitions of |S |. The cohomological degree of the
corresponding AΓ can be determined from the integer partition.

Leher & Solomon wrote down the Poincaré character for the
rational representation on H ∗(Conf (Rn ,S) ; Q).

Fred & I worked out the representation over Z as a sum of
tensor products of representations induced from Young
subgroups: i.e. subgroups of the form

ΣS1 × · · · × ΣSk ⊂ ΣS1⊥⊥···⊥⊥Sk



The top representation (continued)

The top representation comes from the partition with one
subset (or one integer). For example, one basis for this group
consists of the admissible trees. Notice however that a
permutation applied to an admissible tree is often not
admissible.



Here is an admissible tree on {a, b, c, d, e, f } ordered
alphabetically.
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The permutation
(

abcdef
acbdef

)
applied to the above admissible tree

gives the tree
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5

which is no longer admissible: the orientation on the edge
between b and c has the “wrong” orientation.
If we reorient this edge “correctly”, then c supports an
incoming three-term relation.



There are other bases for this top rep which are useful. A rooted
tree is a tree with a distinguished vertex. A tree is called linear
provided every vertex has valence 1 or 2. There must be exactly
two vertices of valence 1. Fix one of the vertices of valence one,
say v.
A linear rooted tree with root v is a linear tree with vertex set S
with one vertex of valence 1 being v. Direct the edges so that
you start at v and just keep going. Number the edges in the
order in which they appear along the tree starting at the root.
Here are the two rooted trees on {1, 2, 3}:

• • •
1 2 3

• • •
1 3 2

Theorem
The set of linear trees with root v is a basis for
H (n−1)(|S |−1)(Conf (Rn ,S) ; Z)
This shows that the top rep as an integral representation of the
of the symmetric subgroup of ΣS fixing v is free.



C (M ,X)

Fix a countably infinite set, say N. Given a space M and a
based space (X , ∗) consider the space of maps f : N→ M ×X .
Define the support of f to be the subset of N such that f (s) 6= ∗.
Let E (M ,X) be the subspace of functions whose support is a
finite subset, say S , and such that the composition
S f−→ M ×X → M is injective.
Define

C (M ,X) = E (M ,X) / ≈

where ≈ is the equivalence relation generated by the following
two types of relations:
1. f1 ≈ f2 if f1 and f2 have the same support and are equal

when restricted to that support
2. f1 ≈ f2 if there exists a bĳection φ : N→ N such that

f1 ◦ φ = f2



C (M ,X) (canonical identifications)
Since any two countably infinite sets are bĳectively equivalent,
the choice of set N is not usually important: if it is we will
write CN (M ,X).
Any bĳection φ : N1 → N2 induces a homeomorphism
CN2 (M ,X)→ CN1 (M ,X). Thanks to relation (2), any two φ
induce identical maps. In particular, any two versions of this
construction can be canonically identified.

In a few pages we will also need the following related remark.
Define the braid space B (M ,S) to be Conf (M ,S) /ΣS . Given
another finite set T of the same cardinality, any choice of
bĳection φ : T → S induces a homeomorphism
φ : Conf (M ,S)→ Conf (M ,T ) which descends to a
homeomorphism B (M ,S)→ B (M ,T ).
The remark is that two different φ’s induced the same map on
the braid spaces so they may be canonically identified. In the
sequel we will write Bk (M ) whenever the index set has
cardinality k.



C (M ,X) (continued)
Filter C (M ,X) by letting Fk (M ,X) ⊂ C (M ,X) be the image
of all functions in E (M ,X) whose support has at most k
elements. Notice both relations (1) and (2) preserve the
cardinality of the support of the functions.
Define Dk (M ,X) to be the cofibre of the inclusion
Fk−1 (M ,X) ⊂ Fk (M ,X). If (X , ∗) is an NDR pair then so is(
Fk (M ,X) ,Fk−1 (M ,X)

)
and we can identify the cofibre. Fix a

finite set of cardinality k, S ⊂ N. The composition
Conf (M ,S)×XS → Fk (M ,X) is onto and factors through the
orbit space Conf (M ,S)×ΣS XS .
Therefore map Conf (M ,S)×ΣS XS → Dk (M ,X) is onto and if
F∆ ⊂ XS is the set of points with at least one coordinate the
base point, then

(
Conf (M ,S)×ΣS XS)/(Conf (M ,S)×ΣS F∆

)
→ Dk (M ,X)

is a homeomorphism.



C (M ,X) (continued)

Any other choice of finite set of cardinality k gives a similar
identification and any choice of bĳection induces the same map.
With a bit of fiddling, one can rewrite Dk (M ,X) as

Dk (M ,X) = Conf (M ,S) nΣS X [S ]

where X [S ] denotes the S-fold smash product.

We would like to extend the natural map
fk : Fk (M ,X)→ Dk (M ,X) to a map C (M ,X)→ Dk (M ,X)
but this is not usually possible.
It is however possible to do so stably.



Stable splitting of C (M ,X)

To describe the extension, first try the most naive thing you
(I?) can think of: given f and T any finite set of cardinality k,

define f |T : N→ M ×X by f |T (s) =
{

f (s) s ∈ T
(m, ∗) s /∈ T

where

m ∈ M is any point you like. Note f |T is a point in Fk (M ,X)
and hence also a point in Dk (M ,X). The obvious problem is
which subset to take. The solution in situations like this where
there is no natural choice is to take all choices.

Let N′ =
(

N
k

)
denote the set of all subsets of N of cardinality

k. Note N′ is also countably infinite.



Define a map

hk : CN (M ,X)→ CN′ (Bk (M ) ,Dk (M ,X))

as follows. Recall that a point in E (M ,X) is a map
f : N→ M ×X satisfying some additional conditions. We need
to define a map hk(f ) : N′ → Bk (M )×Dk (M ,X). An element
of N′ is a set S ⊂ N of cardinality k. Therefore f |S is a point in
Fk (M ,X) and hence a point in Dk (M ,X), denote this point by
[f ]S .
If S is in the support of f , let 〈f 〉S ∈ Bk (M ) denote the image
in Bk (M ) of the point in Conf (M ,S) given by the composition

S ⊂ N f−−→ M ×X → M

If S is not in the support of f , define 〈f 〉S to be any point you
like in Bk (M ). Define

hk(f )(S) = 〈f 〉S × [f ]S



Check that the support of hk(f ) is the set of all subsets of
cardinality k contained in the support of f . The additional
requirements to be a point in CN′ (Bk (M ) ,Dk (M ,X)) can be
checked.
Since Bk (M ) is a manifold, it embeds in RK for some K and so
there is a map

hk : CN (M ,X)→ CN′
(
RK ,Dk (M ,X)

)
Moreover, Dk (M ,X) is path-connected and so a theorem of
Peter May supplies a map
CN′

(
RK ,Dk (M ,X)

)
→ ΩKΣK Dk (M ,X) and so we get a map

hk : CN (M ,X)→ ΩKΣK Dk (M ,X)

and a commutative diagram



Fk (M ,X) Dk (M ,X)

C (M ,X) ΩKΣK Dk (M ,X)

∩

fk

hk

To belabor the point, we could adjoint hk and note

ΣK fk : ΣK Fk (M ,X) ⊂ ΣK C (M ,X) adhk−−−→ ΣK Dk (M ,X)

The K certainly increases as k increases, but if we pass to the
stable world we get an equivalence

QC (M ,X) ∼= Q
∞
∨

k=1
Dk (M ,X)

There are many results concerning this construction and its
pieces.



Remark: QC
(
M ,S0) = Q

∞
∨

k=1
Bk (M )

Remark: For an appropriate K there is a map

Σk·K Dk (M ,X)→ Dk
(
M ,ΣK X

)
which is a homotopy equivalence.

Remark: A theorem of Jeff Caruso says

ΩC (M ,ΣX) ∼= C (M × R,X)

This generalizes the case in which M = Rn due to Peter May.



Remark: If X is path connected, then a theorem of
Bödigheimer says that C (M ,X) is weakly-homotopy equivalent
to a space of sections of a certain bundle E → M . The bundle is
formed from the tangent bundle T → M as follows. Take the
fibre-wise one point compactification of the tangent bundle:
take T ⊥⊥ M → M and topologize so that each fibre is the
one-point compactification of the fibre of T . This bundle is
denoted T̂ and it has a section at infinity. Then E is the
reduced fibre-wise smash of T̂ with X . This a bundle with fibre
the reduced suspension ΣnX . The reduced suspension has a
base point and so E has a section at infinity, σ∞. The support
of a section σ : M → E is the set of all points m ∈ M such that
σ(m) 6= σ∞(m). A section has compact support provided the
closure of the support is compact.
Bödigheimer says that C (M ,X) is weakly-homotopy equivalent
to the space of sections with compact support of E → M .



Corollary
C (M ,X) is a proper homotopy invariant of M.


