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Because of visibility problems at the back of the room there is a large amount of space at the bottom of many slides.



Basic setup and notation
Fix a set with four elements {0,1,2,3} and a PID Λ. Let R denote the
following basic data. There is a Z-graded cochain complex R of Λ
modules with differential d of degree +1. Require an associative
multiplication and a ∪1 product satisfying Hirsch’s formula. For each
subset K ⊂ {0,1,2,3} there is to be a subcomplex RK such that each
RK is a two sided ideal for the product and the ∪1 product. Require
R∅ = R and RK1∪K2 = RK1 ∩RK2 . Write HRK for the cohomology of
RK .



Cochains in RK will always be homogeneous. Write |x| for the grading
of x in R (and hence in any RK) and write x ∈ HR|x|K .
Given two sets of cohomology classes {x1, · · · , xk}, xi ∈ HR|xi|Ki

, and
{y1, · · · , y`}, yi ∈ HR|yi|Li

, write {x1, · · · , xk} ∪ {y1, · · · , y`} = 0 if all
the xi ∪ yj = 0 ∈ HR|xi|+|yj |Ki∪Lj .



Definition/Recall of the products
To define a Massey triple product start with elements xi ∈ HR|xi|i ,
i ∈ {1, 2, 3} such that {x2} ∪ {x1, x3} = 0. Pick representative cocycles
x̂i ∈ Ri and cochains X12 ∈ R12 and X23 ∈ R23 such that
dXij = x̂i ∪ x̂j . Let m = |x1|+ |x2|+ |x3| − 1. Check

X12 ∪ x̂3 + (−1)|x1|+1x̂1 ∪X23

is a cocycle in Rm123. The Massey triple product 〈x1, x2, x3〉 ⊂ HRm123
consists of all elements arising from this construction. It is a coset of
the submodule Jmx1,x3 = x1 ∪HRm−|x1|

23 +HR
m−|x3|
12 ∪ x3.



To define the four-fold product start with elements xi ∈ HR|xi|i ,
i ∈ {0, 1, 2, 3} such that {x0, x2} ∪ {x1, x3} = 0. Define

[x0, x1, x2, x3] = x0 ∪ 〈x1, x2, x3〉 ∈ HRm+|x0|
0123

Note that [x0, x1, x2, x3] is a single element.



Discussion of the products
I Say 〈x1, x2, x3〉 and [x0, x1, x2, x3] are defined if the requisite cup

products are 0.
I Say 〈x1, x2, x3〉 is the triple product associated to the four-fold

product [x0, x1, x2, x3].
I Theorem. If [x0, x1, x2, x3] 6= 0 then 〈x1, x2, x3〉 6= 0.
I Say x0 is an alibi witness for the associated triple product if

[x0, x1, x2, x3] is defined and not 0.
I Alibis often exist. In a compact manifold, oriented for a field Λ, any

non-trivial triple product has an alibi x0 so that [x0, x1, x2, x3] lands
in the top dimension. Not immediately obvious but more later.



Naturality. If f∗ : R → S is a map of basic data, then
(1) f∗

(
〈x1, x2, x3〉

)
⊂ 〈f∗(x1), f∗(x2), f∗(x3)〉

(2) f∗
(
[x0, x1, x2, x3]

)
=
[
f∗(x0), f∗(x1), f∗(x2), f∗(x3)

]



Symmetry
The symmetric group on {0,1,2,3} acts on basic data sets. For
σ ∈ S4, let Rσ have the same R∅ as R. Let Rσ

i = R(i)σ. If [a, b, c, d]
and σ ∈ S4 define [a, b, c, d]σ by writing a = x0, b = x1, c = x2, d = x3
and defining

[a, b, c, d]σ =
[
x(0)σ, x(1)σ, x(2)σ, x(3)σ

]
The elements (0123) and (13) generate a dihedral subgroup D8 of S4
such that, if σ ∈ D8 then [x0, x1, x2, x3]σ is defined if and only if
[x0, x1, x2, x3] is defined.



Definition. Given an ordered set of four integers, e0, e1, e2 and e3, each
ei determines a parity pi ∈ {0, 1}. These four parities can be arranged in
a parity vector, p0p1p2p3 which can be read as a binary integer between
0 and 15. Conveniently these numbers are represented by a single hex
digit between 0 and F. Let H denote the set of single hex digits. It is a
four dimensional Z/2Z vector space with addition given by
bitwise-exclusive-or.
Define the parity vector function, p(e0, e1, e2, e3) ∈ H to be the single
hex digit just described. Given four cohomology classes xi,
i ∈ {0, 1, 2, 3} define

p(x0, x1, x2, x3) ∈ H using ei = |xi|



Theorem 1. There is a function s : D8 ×H→ {0, 1}
[x0, x1, x2, x3]σ = (−1)sσ(p(x0,x1,x2,x3)) [x0, x1, x2, x3]

If D8 acts on H by permuting the binary digits, s is an example of a
crossed-homomorphism.

Table 1. sσ(h)

h
σ

() (0123) (02)(13) (0321) (13) (03)(12) (02) (01)(23)
0 0 1 0 1 1 0 1 0
1 0 0 0 1 1 1 1 0
2 0 1 1 1 1 0 0 0
3 0 1 1 1 0 0 0 1
4 0 1 0 0 1 0 1 1
5 0 1 1 0 0 0 1 1
6 0 1 0 0 0 1 1 1
7 0 0 1 0 0 0 1 0
8 0 0 1 0 1 1 0 1
9 0 0 0 1 1 1 0 1
A 0 0 1 1 1 0 0 1
B 0 1 0 0 0 1 0 0
C 0 0 1 0 1 0 1 1
D 0 1 1 1 0 1 1 1
E 0 0 0 1 0 0 0 1
F 0 0 0 0 0 0 0 0



[x0, x1, x2, x3]σ = (−1)sσ(p(x0,x1,x2,x3)) [x0, x1, x2, x3]

Note that the triple products associated to these permutations of
[x0, x1, x2, x3] are often different so if one four-fold product is non-zero
several different triple products will be non-zero. Since there exist
elements of D8 which move position i, i ∈ {1, 2, 3} to 0, other
consequences include the following.

Theorem 2. [x0, x1, x2, x3] is linear in each variable separately.



Theorem 3. Suppose given vi ∈ HRi, i ∈ {0, 1, 2, 3}. Let the parity
vectors be Px = p(x0, x1, x2, x3) and Pv = p(v0, v1, v2, v3). Then there
is a function ε = ε(Pv, Px) : H×H→ {0, 1} such that

v0 ∪ v1 ∪ v2 ∪ v3∪ [x0, x1, x2, x3] =
(−1)ε [v0 ∪ x0, v1 ∪ x1, v2 ∪ x2, v3 ∪ x3]

Table 2. ε(hv,hx)

hv

hx
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ; 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ; 9 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0
2 ; A 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
3 ; B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
4 ; C 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
5 ; D 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
6 ; E 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
7 ; F 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1



Jacking up Massey products. Let M and N be a Λ-oriented, closed,
compact, manifolds of dimensions m and n respectively. Suppose given
classes vi, i ∈ {0, 1, 2, 3} with

v0 ∪ v1 ∪ v2 ∪ v3 = u ∈ Hn(N ; Λ)
Then, if [x0, x1, x2, x3] ∈ Hk(M ; Λ) is defined,
[v0 ∪ x0, v1 ∪ x1, v2 ∪ x2, v3 ∪ x3] ∈ Hn+k(N ×M ; Λ) is defined.
Moreover, under the split injection
Hk(M ; Λ) = Hn(N ; Λ)⊗Hk(M ; Λ)→ Hn+k(N ×M ; Λ),

u⊗ [x0, x1, x2, x3] = ± [v0 ∪ x0, v1 ∪ x1, v2 ∪ x2, v3 ∪ x3]



The Jacobite diversion
If all three triple products below are defined they fit into a Jacobi
relation ±〈x1, x2, x3〉 ± 〈x1, x2, x3〉(123) ± 〈x1, x2, x3〉(132) = 0.
If the three corresponding four-fold products are defined, they fit into a
Jacobi relation. Additionally, under these hypotheses, the action of any
σ ∈ S4 on a defined [x0, x1, x2, x3] is defined. There are four subgroups
of order 3 in σ ∈ S4 determined by which position is fixed. This gives
rise to four Jacobi relations.



For each Jacobi relation there is a choice of 3-cycle τi and three
functions, ji,k : H→ {0, 1} which, when evaluated on the parity vector
p(x0, x1, x2, x3) satisfy

(−1)ji,0(p(x0,x1,x2,x3)) [x0, x1, x2, x3] +
(−1)ji,1(p(x0,x1,x2,x3)) [x0, x1, x2, x3]τi

+

(−1)ji,2(p(x0,x1,x2,x3)) [x0, x1, x2, x3]τ2
i

= 0

Table 3. Jacobi relations
0 1 2 3 4 5 6 7

0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 1
1 0, 0, 0 0, 1, 1 0, 1, 1 0, 0, 1 0, 0, 0 1, 0, 0 0, 1, 1 1, 1, 0
2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 1, 0, 0 0, 1, 0 1, 1, 1
3 0, 0, 0 0, 0, 0 0, 1, 1 0, 0, 0 0, 1, 1 1, 1, 1 0, 1, 0 1, 0, 1

8 9 A B C D E F
0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 1
1 0, 0, 0 0, 1, 0 0, 0, 0 0, 1, 1 0, 1, 1 1, 1, 0 0, 1, 1 1, 1, 1
2 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 1 1, 0, 1 0, 1, 1 1, 1, 1
3 0, 0, 0 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 0 1, 0, 1 0, 1, 1 1, 1, 1



If x2 = 0 then 〈x, x, x〉 is defined and 3 〈x, x, x〉 = 0. (If Λ = Z/3Z,
Kraines identifies 〈x, x, x〉 as a Steenrod operation.) Symmetry then
implies the next result.

Theorem 4. If [x0, x1, x2, x3] is defined and if any three of the xi are
equal, then 3 [x0, x1, x2, x3] = 0.



Pairings
Fix x1 and x3 and define a submodule of HRk2 by

x2 ∈ Akx1,x3(R2) if and only if {x2} ∪ {x1, x3} = 0.



x2 ∈ Akx1,x3(R2) if and only if {x2} ∪ {x1, x3} = 0.

Similarly x1 and x3 show up in

J kx1,x3(R123) = x1 ∪HR k−|x1|
23 + x3 ∪HR k−|x3|

12 ⊂ HRk123



x2 ∈ Akx1,x3(R2) if and only if {x2} ∪ {x1, x3} = 0.

J kx1,x3(R123) = x1 ∪HR k−|x1|
23 + x3 ∪HR k−|x3|

12 ⊂ HRk123

Massey triple products are then single-valued in the quotient group
HRk123/J kx1,x3(R123). Define

Mk
x1,x3(R123) ⊂ HRk123/J kx1,x3(R123)

to be the submodule of all Massey products.
There are similar definitions with 2 replaced by 0.



Akx1,x3(R2) plays two roles. The map

x2 ∈ Akx1,x3(R2) 7→ 〈x1, x2, x3〉

Akx1,x3(R2)→Mk+|x1|+|x3|−1
x1,x3 (R123)

is a surjective homomorphism so Akx1,x3(R2) creates Massey products.



The map
x2 ∈ Akx1,x3(R2), 〈x1, x0, x3〉 ∈M`

x1,x3(R013)(
x2, 〈x1, x0, x3〉

)
7→ [x2, x1, x0, x3]

Akx1,x3(R2)×M`
x1,x3(R013)→HRk+`

0123

is bilinear and alibis Massey products.



Duality
Say that the basic data is n-dually paired if there exists a
homomorphism ω : HRn0123 → Λ such that, for any partition
K1, K2 of {0,1,2,3} which separates 0 from 2 and any k,
the products HRn−kK1

⊗HRkK2
→ HRn0123 → Λ are

non-degenerate pairings.



Closed compact manifolds which are Λ-orientable have such a pairing
with all the RK being the singular cochains.

Compact manifolds with boundary which are Λ-orientable have such a
pairing as well whenever exactly one of the Ri is the relative cochain
complex and the other three are absolute.



If the basic data is n-dually paired, then

An−k(R0)x1,x3 =
(
J kx1,x3(R123)

)⊥

An−k(R2)x1,x3 =
(
J kx1,x3(R013)

)⊥



Theorem 5. There are non-degenerate pairings

An−k(R0)x1,x3 ⊗
(
HRk123

/
J kx1,x3(R123)

)
→ Λ

An−k(R2)x1,x3 ⊗
(
HRk013

/
J kx1,x3(R013)

)
→ Λ

induced by the cup product. Restricted to the submodule of Massey
products, the pairings are given by four-fold products.



There are two sorts of “useless” elements in An−k(R0)x1,x3 : some give
the trivial Massey product; some never alibi anyone. It turns out these
two subgroups are the same so . . .



Suppose the basic data is n-dually paired and let
m = n+ |x1|+ |x3| − 1. Then there is a non-degenerate pairing

Mm−k
x1,x3(HR013)⊗Mk

x1,x3(HR123)→ Λ

The pairing sends 〈x1, x0, x3〉 ⊗ 〈x1, x2, x3〉 to [x0, x1, x2, x3].



It is occasionally useful to identify “useless” elements in an A∗(Ri)x1,x3 .
If x2 = u ∪ v with x1 ∪ u = 0 and x3 ∪ v = 0 then 〈x1, u ∪ v, x3〉 = 0.
Symmetry implies

Theorem 6. [x0, x1, x2, x3] = 0 whenever it is defined and, with indices
mod 4, xi = u ∪ v and xi−1 ∪ u = 0 = xi+1 ∪ v.



Examples
Theorem 7. Let W be a Λ-oriented, compact bordism between two
connected n-dimensional manifolds. Assume H1(W,∂W ;Z) ∼= Z. Let
ι± : ∂±W →W denote the inclusions. Then Hn(W ;Z) ∼= Z. The two
boundary components can be oriented so that if
[w0, w1, w2, w3] ∈ Hn(W ) then[
ι∗−(w0), ι∗−(w1), ι∗−(w2), ι∗−(w3)

]
=
[
ι∗+(w0), ι∗+(w1), ι∗+(w2), ι∗+(w3)

]



It turns out to be relatively easy to understand Massey products of three
classes of degree 1 since these only depend on the fundamental group. A
good source of examples are 3-manifolds. Perhaps the most famous
example is Massey’s proof that the triple product can be used to show
that the Borromean rings are linked.



A second famous example is the Heisenberg manifold, M : real upper
3× 3 triangular matrices modulo the subgroup of integer ones. The
integral cohomology is torsion-free and H1 is generated by two classes

x1, x2 which are dual to the loops t 7→

 1 t 0
0 1 0
0 0 1

 or

 1 0 0
0 1 t
0 0 1

.



Then 〈x1, x1, x2〉 is indivisible in H2. By Theorem 4

[x1, x1, x1, x2] = 0 and by duality [x2, x1, x1, x2] = ±1
Symmetry forces

[x1, x1, x2, x2] = [x2, x1, x1, x2] and by duality [x2, x1, x2, x2] = 0

so with the correct choice of orientation,

〈x1, x1, x2〉 = x∗2 and 〈x1, x2, x2〉 = x∗1 .



A theorem of T. Miller says that a closed, compact, (k − 1)-connected
manifold of dimension less than 4k − 1 is formal.

Many people produced examples at the boundary, (k − 1)-connected
manifold of dimension 4k − 1 which are not formal. M. Katz requested
examples of such manifolds with all products from Hk being zero and all
of H3k−1 spanned by Massey products. He also wanted certain
cohomology groups to be torsion-free. Dranishnikov and Rudyak
produced such examples in many dimensions. Here is a different
construction which gives examples in all dimensions.



Start with T 4 ×M . Let H1(T 4) be generated by t0, t1, t2 and t3, the
pull-backs of a generator of H1(S1) under the four projections. Let
z0 = t0 ∪ x2, z1 = t1 ∪ x1, z2 = t2 ∪ x1 and z3 = t3 ∪ x2. Note
[z0, z1, z2, z3] = 1 and [zi, z1, z2, z3] = 0, i ∈ {1, 2, 3}.



Do surgery to kill π1 and all of H2 except for a Z4. If W is the trace of
the surgery this can be done so there are classes wi ∈ H2(W ) so that
[wi, w1, w2, w3] is defined and the wi map to the zi. Let K7 denote the
other end of the trace of the surgery and let ẑi ∈ H2(K) denote the
image of wi. Check that the wi span H2(W ;Z) and wi ∪ wj = 0 for all
i, j ∈ {0, 1, 2, 3}. Furthermore the [ẑi, ẑ1, ẑ2, ẑ3] are defined and have
the same values as the unhatted versions. (Theorem 7).



Apply symmetry to produce four Massey products which form the dual
basis to the ẑi. The manifold K7 satisfies all of Katz’s requirements.

The above construction using Sk−1×Sk−1×Sk−1×Sk−1 in place of T 4

produces examples in all dimensions.
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