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Because of visibility problems at the back of the room there is a large amount of space at the bottom of many slides.


Basic setup and notation
Fix a set with four elements {0,1,2,3} and a PID A. Let R denote the
following basic data. There is a Z-graded cochain complex R of A
modules with differential d of degree +1. Require an associative
multiplication and a U; product satisfying Hirsch's formula. For each
subset K C {0,1,2,3} there is to be a subcomplex Ry such that each
Ry is a two sided ideal for the product and the U; product. Require
Ry = R and Rk, ,uk, = Rk, N Rk,. Write H R for the cohomology of
Rk.



Cochains in Ry will always be homogeneous. Write |z| for the grading
of z in R (and hence in any Rg) and write z € HR';'.

Given two sets of cohomology classes {z1, - ,z}, z; € HR'%‘, and

{ylv'” Jyf}' Yi € HRIyzll write {.’131,"' 7xk}U{y17"' 7yf} =0 if all

the z; Uy, = 0 € HRyg [



Definition /Recall of the products
To define a Massey triple product start with elements x; € HRlim,
i € {1,2,3} such that {z2} U {z1, 23} = 0. Pick representative cocycles
Z; € Ry and cochains X192 € Ri2 and Xa3 € Rag such that
dXij =z; U i’j. Let m = |$1‘ + ’372’ + |.%'3‘ — 1. Check

XioUds+ (—1)"1+12, U Xos

is a cocycle in RY%5. The Massey triple product (z1, 9, x3) C HRYhg
consists of all elements arising from this construction. It is a coset of

the submodule J .. =z U HRZ?‘II‘ + HR:;'“' U xs.

1,23
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To define the four-fold product start with elements z; € HR
i €{0,1,2,3} such that {zo,z2} U {x1,23} = 0. Define
m+|zol

[$0,$1,$2,1‘3] =z U (951,%27903) € HRp1a3

Note that [zg, z1, 2, 23] is a single element.



Discussion of the products

» Say (x1,x9,x3) and [xg, x1, z2, x3] are defined if the requisite cup
products are 0.

» Say (x1,x9,x3) is the triple product associated to the four-fold
product [xg, x1, T2, x3)].

» Theorem. If [xg,x1,z2, 23] # 0 then (x1,x9,23) # 0.

» Say xq is an alibi witness for the associated triple product if
[0, x1, T2, 3] is defined and not 0.

» Alibis often exist. In a compact manifold, oriented for a field A, any
non-trivial triple product has an alibi z¢ so that [z, z1, 22, x3] lands
in the top dimension. Not immediately obvious but more later.



Naturality. If f*: R — S is a map of basic data, then
(1) fr (1, 22, 3)) C (f*(21), f*(22), [*(23))
(2) f ([0, w1, 2, 23]) = [f*(w0), f*(21), [*(22), £ (23)]



Symmetry
The symmetric group on {0, 1,2, 3} acts on basic data sets. For
o € Sy, let R7 have the same Ry as R. Let R{ = R;),. If [a, b, ¢, d]
and o € S, define [a,b, ¢, d], by writing a = 29, b =1, ¢ = z2, d = x3
and defining

[CL, b, c, d]o’ = |:':U(0)0'7 L(1)os L (2)os x(3)aj|

The elements (0123) and (13) generate a dihedral subgroup Dg of Sy
such that, if o € Dg then [zg, 21,22, z3], is defined if and only if
[0, 21, T2, 3] is defined.



Definition. Given an ordered set of four integers, eg, €1, e2 and eg, each
e; determines a parity p; € {0,1}. These four parities can be arranged in
a parity vector, pop1p2ps wWhich can be read as a binary integer between
0 and 15. Conveniently these numbers are represented by a single hex
digit between 0 and F. Let H denote the set of single hex digits. It is a
four dimensional Z /27 vector space with addition given by
bitwise-exclusive-or.

Define the parity vector function, p(eo, €1, e2,e3) € H to be the single
hex digit just described. Given four cohomology classes x;,

i €{0,1,2,3} define

p(zo, 21, 22,23) € H using e; = |z



Theorem 1. There is a function s: Dg x H — {0,1}
(20, 1, w2, @3], = (—1)% PEOTLT2)) [30 ) g, 9]

If Dg acts on H by permuting the binary digits, s is an example of a
crossed-homomorphism.

Table 1. s,(h)

n | (| (0123) | (02)(13) | (0321) | (13) | (03)(12) | (02) | (01)(23)
0|0 1 0 1 1 0 1 0
1[0 0 0 1 1 1 1 0
2 |0 1 1 1 1 0 0 0
3 0] 1 1 1 0 0 0 1
£ 0] 1 0 0 1 0 1 1
5 0] 1 1 0 0 0 1 1
6 |0 1 0 0 0 1 1 1
70| O 1 0 0 0 1 0
8 0] 0 1 0 1 1 0 1
9 0] 0 0 1 1 1 0 1
AJ0O| © 1 1 1 0 0 1
B |0 1 0 0 0 1 0 0
Clo| o 1 0 1 0 1 1
D 0| 1 1 1 0 1 1 1
E [0 0© 0 1 0 0 0 1
F 0| 0 0 0 0 0 0 0




(20, 21, T2, 73], = (—1)% PEOTLT2T3) [ 3y 29 25]

Note that the triple products associated to these permutations of
[0, x1, 2, x3] are often different so if one four-fold product is non-zero
several different triple products will be non-zero. Since there exist
elements of Dg which move position i, ¢ € {1,2,3} to 0, other
consequences include the following.

Theorem 2. [xg, x1, x2, x3] is linear in each variable separately.



Theorem 3. Suppose given v; € HR;, i € {0,1,2,3}. Let the parity
vectors be P, = p(zg, z1, z2,23) and P, = p(vp, v1,v2,v3). Then there
is a function ¢ = ¢(P,, P,): H x H — {0, 1} such that

vo Uy Uvg UwsU[xg, x1, 22, 23] =
(—=1)F [vo Uz, v1 U1, v2 Uz, v3Uxs]

TABLE 2. e(hy, hy)

=
X

6

3
5

o
©
Q

=)
S| =
o

=]
(=)
jen) Ran] B}

(==
(==
—_
—_

no

—|lo|l—~|lo| —
—_

el e K=l =l |

oo oo ™
o

ol ool 1

=l o|lolr ool ™

(=)
(=)
—
—_
(=)
(=)
—

|| O = | W
Slicliwi k@l leslig =] ed
(=) Nl R R R Rl Nl I )
OO == == w
=== O
el e Rl =)

o

[e=}

o
=l =
=l =l
ol —lo|lol o
o|lr|—lolo|lr ol T




Jacking up Massey products. Let M and N be a A-oriented, closed,
compact, manifolds of dimensions m and n respectively. Suppose given
classes v;, © € {0,1,2,3} with

vUviUvgUvg =u € Hn(N,A)
Then, if [zg, 21, 22, 23] € H*(M;A) is defined,
[vg U z0,v1 U1, v9 Umg,v3 Uws] € H"F(N x M;A) is defined.
Moreover, under the split injection
HE(M;A) = HY(N; A) @ H¥(M;A) — H" (N x M; A),

U & [xo,.%'l,xg,xg] =+ [’U() Uz, v1 Ux1,v2 UZo,v3 U:L'3]



The Jacobite diversion

If all three triple products below are defined they fit into a Jacobi
relation £ (z1, x2, x3) + (21, T2, a:3>(123) + (21, x9, x3>(132) =0.

If the three corresponding four-fold products are defined, they fit into a
Jacobi relation. Additionally, under these hypotheses, the action of any
o € 84 on a defined [xg, x1, x2, x3] is defined. There are four subgroups
of order 3 in 0 € S, determined by which position is fixed. This gives
rise to four Jacobi relations.



For each Jacobi relation there is a choice of 3-cycle 73 and three
functions, j; . : H — {0, 1} which, when evaluated on the parity vector
p(xo, x1, T2, x3) satisfy

(_1)ii,o(P(930,931,€v2,5E3)) [z, 21, T2, 23]

+
(_1)ji’1(p(w0,$1,w2,$3)) [x0, 21, T2, 3] +
9 9 Y Ti

i

(_1)ii,2(P(5’30:5’317x2’x3)) [xo, x1,Z2, 1‘3]7_.2 =0

TABLE 3. JACOBI RELATIONS

0 1 2 3 4 5 6
0,0,0 | 0,0,0 | 0,0,0 | 0,0,1 | 0,0,0 | 1,0,0 | 0,1,0
0,0,0 | 0,1,1|0,1,1| 0,0,1 | 0,0,0 | 1,0,0 | 0,1,1
0,0,01 0,0,0 | 0,0,0 | 0,0,0 | 0,0,1 1 1,0,0 | 0,1,0
0,0,0 | 0,0,0 | 0,1,1| 0,0,0 | 0,1,1 | 1,1,1 | 0,1,0

8 9 A B C D E
0,0,0 | 0,0,0 | 0,0,0 | 0,0,1 | 0,0,0 | 1,0,0 | 0,1,0
0,0,01| 0,1,0 | 0,0,0 | 0,1,1 | 0,1,1 | 1,1,0| 0,1,1
0,0,11 0,0,01 0,0,0 | 0,0,10,0,1]1,0,1]0,1,1
0,0,0 | 0,1,1|0,1,1|0,1,1|0,1,0 | 1,0,1 | 0,1,1
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If 22 = 0 then (,x,z) is defined and 3 (z,z,z) = 0. (If A = Z/3Z,
Kraines identifies (z,z, x) as a Steenrod operation.) Symmetry then
implies the next result.

Theorem 4. If [z, z1, %2, x3] is defined and if any three of the x; are
equal, then 3[zg, 1, x2, 23] = 0.



Pairings
Fix 21 and 23 and define a submodule of HR’§ by

ﬂ?QEAk

1,3

(R2) if and only if {z2} U {z1, 23} = 0.




QSQEA

1,3

(R2) if and only if {x2} U{z1,23} =0.

Similarly 1 and x3 show up in

‘-7:!:1,1‘3<R123) =z U HRk |z1] 4 x3 UHR

k—|z3]




x9 € AF R2) if and only if {zo} U {z1,23} =0.

T 503(

k—|z3]

TE i(Rizs) = 21U HRyy ™ 4 23 U HRYS ™ ¢ HRY,y

Massey triple products are then single-valued in the quotient group
Rlg3/TF .s(Ri23). Define

M];Lxg (R123) - HRI{23/\71{€17J:3 (R123)

to be the submodule of all Massey products.
There are similar definitions with 2 replaced by 0.




AF  (Rg2) plays two roles. The map

1,%3
k

T1,T3

AL Ly (Rg) = MEF I (Ry 5g)

T1,T3

T € A (R2) = <$17$2>$3>

k

is a surjective homomorphism so A7, .
I

(R2) creates Massey products.



The map
zo € AY L (Ra), (1,20, 23) EM, . (Ro13)
(z2, (1, 0, T3)) — |22, 21, T0, T3]
Ak (Ra) x MY, . (Ro1s) —HRiTss

1,3 1,23
is bilinear and alibis Massey products.



Duality
Say that the basic data is n-dually paired if there exists a
homomorphism w: H Rg;93 — A such that, for any partition
K, Ky of {0,1,2,3} which separates 0 from 2 and any k,
the products HR%;]“ ® HRE. — HR{y95 — A are
non-degenerate pairings.



Closed compact manifolds which are A-orientable have such a pairing
with all the Rx being the singular cochains.

Compact manifolds with boundary which are A-orientable have such a
pairing as well whenever exactly one of the R; is the relative cochain
complex and the other three are absolute.



If the basic data is n-dually paired, then

An_k(RO)rhx:a =

k €L
(T2 25 (R123))

Anik(R2)fE17fE3 =

(TE 2y (Rf)la))L




Theorem 5. There are non-degenerate pairings
AR (Ro)ey 0y @ (HRY23/T% 2 (Ra2s)) = A

A" M (Ra)ey ay @ (HREy3/ T8 oy (Rors)) — A

induced by the cup product. Restricted to the submodule of Massey
products, the pairings are given by four-fold products.



There are two sorts of “useless” elements in A”_k(Ro)xl,zS: some give
the trivial Massey product; some never alibi anyone. It turns out these
two subgroups are the same so ...



Suppose the basic data is n-dually paired and let
m =n+ |z1]| + |z3| — 1. Then there is a non-degenerate pairing

Mk (HR013) @ Mk

x1,T3 T1,T3

(HR123) — A

The pairing sends (z1, zg, x3) ® (1,22, x3) to [z, z1, T2, 3]



It is occasionally useful to identify “useless” elements in an A*(R;)z, 25
If zo =wuUwv with x1 Uu =0 and 23 Uv = 0 then (z1,uUwv,x3) = 0.
Symmetry implies

Theorem 6. [xg, x1, z2, 3] = 0 whenever it is defined and, with indices
mod 4, z; =uUwv and z;_1 Uu =0 = x;41 Uw.



Examples

Theorem 7. Let W be a A-oriented, compact bordism between two
connected n-dimensional manifolds. Assume Hi(W,0W;Z) = Z. Let
t4: 0+W — W denote the inclusions. Then H™(W;Z) = Z. The two
boundary components can be oriented so that if

[wo, w1, wa,ws] € H" (W) then

[[’*— (wo), Dl (w1)7 Dl (wQ)v Dl (w3)} = [L*—&- (’LU()), /’*—i-(wl)7 L*-i- (w2)7 [’*—i-(w?))]



It turns out to be relatively easy to understand Massey products of three
classes of degree 1 since these only depend on the fundamental group. A
good source of examples are 3-manifolds. Perhaps the most famous
example is Massey's proof that the triple product can be used to show
that the Borromean rings are linked.



A second famous example is the Heisenberg manifold, M: real upper

3 x 3 triangular matrices modulo the subgroup of integer ones. The

integral cohomology is torsion-free and H' is generated by two classes
1 t 0

x1, 2 which are dual to the loopst— | 0 1 0 or
0 0 1

o = o
[ N )

1
0
0



Then (1,21, 22) is indivisible in H?. By Theorem 4

[z1,21,21,22) =0 and by duality [z2, 21,21, 22] = £1

Symmetry forces

(21,21, X2, x2) = 22, 21,21, 22] and by duality |22, 21,29, 22] =0

so with the correct choice of orientation,

(x1,m1,29) = 75 and (x1,m2,T2) = X7 .



A theorem of T. Miller says that a closed, compact, (k — 1)-connected
manifold of dimension less than 4k — 1 is formal.

Many people produced examples at the boundary, (k — 1)-connected
manifold of dimension 4k — 1 which are not formal. M. Katz requested
examples of such manifolds with all products from H* being zero and all
of H3*~1 spanned by Massey products. He also wanted certain
cohomology groups to be torsion-free. Dranishnikov and Rudyak
produced such examples in many dimensions. Here is a different
construction which gives examples in all dimensions.



Start with 7% x M. Let H'(T*) be generated by to, t1, t2 and t3, the
pull-backs of a generator of H'(S') under the four projections. Let

20 =toUxe, 21 =t1 Ux1, 20 =t Ux and z3 = t3 U x2. Note
[20,21,22,23] =1 and [Zi,Zl,ZQ,Zg] =0,171€ {172,3}.



Do surgery to kill 71 and all of H? except for a Z*. If W is the trace of
the surgery this can be done so there are classes w; € H2(W) so that
[w;, w1, wa, ws] is defined and the w; map to the z;. Let K7 denote the
other end of the trace of the surgery and let 2; € H?(K) denote the
image of w;. Check that the w; span H(W;Z) and w; Uw; = 0 for all
i, 7 € {0,1,2,3}. Furthermore the [Z;, 21, 22, 23] are defined and have
the same values as the unhatted versions. (Theorem 7).



Apply symmetry to produce four Massey products which form the dual
basis to the 2;. The manifold K7 satisfies all of Katz's requirements.

The above construction using S*~1x S5~ 1x §¥~1x §k=1 in place of T*
produces examples in all dimensions.
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