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1 A modest answer

There is a similar definition using Z /27 coefficients and in this case, Wu gave a
very nice criterion in terms of the tangent bundle of M of this mod 2 intersection
form to be even. Wu phrased his answer in terms of the stable tangent bundle,

v M — BO, and what are now called the Wu classes v, € HY(BO;Z/27):

Theorem 1.1 (Wu). The mod 2 intersection form of M* is even if and only
Zf T;{}(’Uz]{) = ().

Christan Bohr, Ronnie Lee and T. J. Li answered the question in terms of the
evaluation homomorphism in the Universal Coefficients Theorem,

ev: H'(M:7./27) — Hom(H,(M;7Z),7/27)

as follows:
Theorem 1.2. M* is even if and only if ev(Tj\’}(vzk)) = 0.

There is an inclusion ¢: Z /27 — 7/2% and an induced map on cohomology.

Theorem 1.3. M* is even if and only if (. (T@(v%)) = 0.



There is an inclusion ¢: Z /27 — 7./2*° and an induced map on cohomology.

Theorem 1.3. M* is even if and only if (. (Tj\}(vgk)) = 0.

Proof. ) )
! l
Ext(Hop 1(M;Z),2./27) — Ext(Hop 1(M;7Z),7/2%)
l l
H?**(M;7,/27) s H(M;7Z./2%)
evl evi
Hom(Hop(M:Z),Z/2Z) % Hom(Ho(M:Z),7./2%)
l l
0 0

I, 1s injective.

EXt(HQk_l(M; Z), Z/QOO) =0



Let v,(2%°) = 1,(vy) € HY(BSO;Z/2%).
Theorem 1.4. M* is even if and only if TE\’}(U%@OO)) = 0.

Remark 1.5. This characterizes evenness as the vanishing of a universal charac-

teristic class and suggests the following shift of viewpoint, going back at least to
Lashof.

vy (2%°
Let BSO{v(2*°)) denote the homotopy fibre of the map BSO ( )> K(Z./2%;¢)
and let py: BSO(vy(2°°)) — BSO be the inclusion made into a fibration. Then

Definition 1.6. A vy (2*°)-structure on a bundle £: X — BO is a lift of £ to

Remark 1.7. The fibration is principal so the set of lifts is an H* Y X; Z/2%)-
torsor.



2 Related structures

One can also kill ve;, or 0vgr, where 0 is the integral Bockstein, to get principal
fibrations

BSO(vay) —4 BSO —22 K(Z,)27, 2k)

5@2k

BSO(Svy,) —2+ BSO —2 K(7,2k + 1)

There are also vy-structures and dvy-structures on a bundle, defined as lifts. And
the set of lifts are torsors.

Any vg-structure induces a canonical vqp, (2°°)-structure. Since

0 -7 =% 7 — 7Z/27 —0
| | A
0—>Z — Zi| - Z/2* =0

commutes, any vq (2°°)-structure induces a canonical dvyi-structure.

Let 0o, denote the Bockstein associated to the bottom exact sequence: ¢ denotes
the Bockstein associated to the top exact sequence.



3 Algebraic Topology

To amplify the last remark, note there are lifts

BSO(vy) —=% BSO(wy(2%)) —22 BSO(Sva)

|

BSO = BSO = BSO

From the Serre spectral sequence, there exists classes Vo, € H?*(BSO{(vy); Z)
and 1y, € H*H(BSO(0t(2%)): Z,/2%).

Lemma 3.1. 5oo(wgk) = ", (Var); [f_>2(¢2k) = 0; 52(%};) is the Wu class
P’ (’ng) c H**(BSO(v9;(2%°)): Z/27Z). The following diagram commutes

Hop(BSO(vs(2)); Z/2Z) — ZL[2Z

'] gl

Hop 1(BSO(ua(2°)): Z) 225 7,/9%



Another way to think about even structures is that a bundle £: X — BSO has a
Vi (2%°)-structure provided there is a homomorphism A making

Ho(X:Z./27) =2 7./27

'l ‘|
Hop,—1 (X Z) - 7]2%

commute. If there is such an h, there are even structures such that A = 1)y,
Even structures are a H**71(X; Z/2%)-torsor: even structures with a fixed h are a

ZH?* 7YX 7./2°°)-torsor. These remarks follow from the action of the fibre of the
total space of the principal fibration.

Silly Remark 3.2. A bundle £ has vy (&) = 0 if and only if A can be taken to
be trivial if and only if h restricted to s Hor_1(X; Z) is trivial.



4 4-dimensional manifolds

[n dimension four, vy = w,y, so BSO(vy) = BSpin and BSO(dvy) = BSpin©.
The map 1)y: m (BSO(v,(2%°))) — Z/2* is an isomorphism:

BSpin — BSO{v,(2°)) 2, BZ7./2%

displays the universal cover.

It follows from Silly Remark 3.2 that

Theorem 4.1 (Bohr and Lee & Li). Every even, compact 4 manifold M has
a cyclic cover which is Spin: in particular, the cover corresponding to the

kernel of 1y m(M) — Z/2% is Spin.
and that

Theorem 4.2. If M is an even 4 manifold, the cover corresponding to a
subgroup I' C m (M) is Spin if and only if the composition

o HI(IZ) — oHi(m(M),Z) — Z/2%

18 trivial.

Less silly but still true



Theorem 4.3. Let m be any finitely present group and let h: m — 7Z./2° be any

homomorphism. Then there exist even, compact 4 manifolds with m(M) =«
and with 1y for that even structure being h.

Since the universal cover of an even 4 manifold is Spin, Hoptf shows that v, comes
from H?*(mw;Z/27). Take v € H*(w; Z/27) to be the composition

Hy(m; 7. /27.) 2, H(m:;7Z) -, Z./2%

and results in Teichner’s thesis construct an M with the desired properties.

Both Bohr and Lee & Li construct examples of even 4 manifolds for which the
cover corresponding to the kernel of 1)y is the minimal cyclic cover which is Spin.

~

For completeness, note that the semi-dihedral group of order 16 has H(SDyg; Z.) =
7./47, B 7./ 27 and one can find examples for which 1), is the projection onto Z /47Z.

The evident 4-fold cover is certainly Spin, but so is the 2-tfold sub-cover with group
7./87, C SD1. In fact, given any even 4 manifold with m; = SDsg, the double

cover with fundamental group 7Z/87Z is Spin.

What can one say about the converse to the Bohr, Lee & Li result?
If M* has a cyclic Spin cover, must M be even?



To begin more generally, suppose M — M* — B is a cover and that M is Spin.
Consider the Serre spectral sequence with Z /27 coefficients.
HY(Br ; HQ(JTJ . Z/2Z))
HY(Br Hl(z\7 . 2/22)) HY(Br  HY(M ; 2/2Z))
HY(Br ; Z/2Z) HY(Br ; 2/22) H*(Br : Z/2Z) H%(Br ; Z/2Z)

The total degree two line is in red.
Compare this spectral sequence to the one with Z /2% coefficients.

Lemma 4.4. If Hy(Bw;7Z) is odd torsion, H*(Bw;Z/2>) = 0.
EG 4.5. [{2(37'('7 Z/ZOO) — O fOl” mw = Z/QTZ7 D2r+2, er—l—? and SD27«+3.

It H 1(]\7 . 7)) has no 2-torsion, then H 1(]\7 . 7,/2%°) is 2-divisible and hence
H' (B, H'(M;Z/2*)) = 0 if 7 is a finite 2-group.

Theorem 4.6. [f]\7 — M — Br is a cover with M Spin, and if H1(]\7; 7)
has no 2-torsion and if 7 is a finite 2-group with H*(Bw; Z/2%) = 0, then M
IS even.



To construct examples for which M is not even, note

Theorem 4.7. If M — M — B is a cover with M Spin, if Hi(M:Z) =
B 7Z/27 and if vo( M) is non-zero in EL', then M is not even.

This follows since Hy(M:Z) = & Z/2Z implies H(M:Z/2Z) — HY(M:Z/2*)
IS an isomorphism.

EG 4.8. Use results in Teichner’s thesis to construct an M* with 7, = Z /27 &
7./27 and vy, = x Uy where x, y € HY(Bm;Z/27) are a basis. Then M is not
even but it has a Spin double cover.

One can repackage these results as results on free actions of finite groups on Spin
4 manifolds.



5 Group actions on Spin 4 manifolds

Throughout this section, let M* be a compact, closed, Spin 4 manifold and let G
be a finite group acting freely on M.

[f G has odd order, M /G is Spin so 16 - |G| divides o(M) by Rochlin’s Theorem.

Theorem 5.1. Let o(M) denote the signature of M. If H\(M;Z) has no
2-torsion and if Hy(BG;Z) =0, then 8 - |G| divides o(M).

Some hypotheses were omitted in the lecture for the next three results.

Theorem 5.2. Let (M) denote the signature of M. If the 2-Sylow subgroup
of G is Z/27. ® Z./]27 and if Hi(M;Z) has no 2-torsion then 4 - |G| divides
og(M).

Theorem 5.3. Assume the hypotheses of 5.2. Further assume
o(M)=4-|G| mod 8-|G|

then M/G is odd. If vo(M/G) € H*(BG;Z/27) and if v: Z./27 C G is any
subgroup of order 2, t*(vo(M/G)) # 0.



EG 5.4. Let K* be a K3 surface, a simply-connected a.
16. Habegger constructed free involutions on K as d

gebraic surface of signature
1d Enriques. The quotient

K /z/2z is an even manifold of signature 8 as required |

Hitchin constructed a free action of G = Z /27 & 7./

by Theorem 5.1.
27, on K so Theorem 5.2

is best possible. In order for Theorem 5.3 to hold, vy(K/G) € H?*(G;Z/27) is

T? 4+ y? + zv.

The conditions in Theorem 5.3 are hard to achieve. If

G = ® Z/2Z, then for any
3

a € H*(BG;7Z/27) there exists an ¢: Z/27 C G such that t*(a)) = 0.

Theorem 5.5. If H(M;7Z) has no 2-torsion and
Sylow subgroup then 8 - |G| divides (M ).

if ®Z/2Z C G is the 2-
3



8 Even bordism

In dimension 4k, even bordism consists of 4k manifolds with a vy (2°)-structure

modulo those which bound a 4k + l-manifold with a v9;(2°°)-structure which
restricts. Even bordism is easy to relate to dvy-bordism: there is a fibration

BSO(v:,(2%°)) — BSO(6vs) — K (Z[3], 2k)

and a spectral sequence

H, (K (Z 3], 2k) s MSOy{var(27))) = M SO, {0v21)

By Serre mod-€ theory M SO, (v9,(2%°)) — M SO, is a rational isomorphism with

kernel and cokernel 2-torsion; similarly, M SO, (dvy,) — MSO,(K(Z,2k)) is a
rational isomorphism with kernel and cokernel finitely-generated 2-torsion.

It follows from the spectral sequence that
MSO4k<U2k(QOO)> — MSO4]{;<(5U2]€>
1S Injective.

In dimension 4 the calculation can be done in many ways.



Theorem 8.1. M SO(15(2%)) = Z with the signature divided by 8 giving the
1somorphism.

One can further check that MSO5(vy(2%°)) = 7Z/2%° and MSOs5(vy(2%°)) =
7.)2° & 7,/2.
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