\[\varepsilon = \sqrt{\frac{R - R_L}{R_L}} \] gives eq. of curve \(u = \varepsilon A \)

- This is what happens in certain circumstances, even though these results are not from the N-S eqs.

Problem: we can conclude nothing about the stability of the bifurcation solution, since \(\partial \) was dropped from eq. It is that term which yields the necessary stability information.

Landau - Stuart - Watson Procedure

\[- \phi_x + \nabla^2 \phi - R \phi_{xx} = 0\]

If \(\phi = A(t) \cos kx \sin z \), the eq. becomes,

\[-A \cos kx \sin z - (k^2 + 1)^3 A \cos kx \sin z + ARk^2 \cos kx ; \sin^2 z = 0\]

then, \(\dot{A} = \sum Rk^2 - (k^2 + 1)^3 \frac{3}{2} A \)

using \((k^2 + 1)^3 = R_Lk^2 \),

then \(\dot{A} = k^2 (R - R_L) A \)

\[\therefore \dot{A} = \nabla A ; \quad \nabla = k^2 (R - R_L) \]

So: growth rate \(\nabla \) depends on whether \(R \geq R_L \) and the same result is reached using a general \(A(t) \) time dependence.
viz. \(e^{\tau t} \) time dependence.

In 1944 Landau proposed the amplitude eq. of the form,

\[
\hat{A} = F(A)
\]

where \(F(A) = \tau A \) when \(A \) is small.

The first specific proposal for \(\hat{A} \) was

\[
\hat{A} = \tau A - a_{11} A^3 + \ldots \quad \text{-- Ricatti Eq.}
\]

Take a look at \(\hat{A} = \tau A - a_{11} A^3 \), use change of variables. \(y = \frac{1}{A^2} \)

Then, \(\frac{dy}{A^3} = -2 \frac{\hat{A}}{A^3} \)

and \(-\frac{A^2 y'}{2} = \tau A - a_{11} A^3 \)

\[
-\frac{y'}{2} = \frac{\tau}{A^2} - a_{11} = \tau y - a_{11}
\]

\[
\therefore \quad y' + 2\tau y = 2a_{11} \quad \text{so now it's linear.}
\]

Sol. \(y = \frac{a_{11}}{\tau} + Ce^{-2\tau t} \quad C = \text{const.} \)

\[
A = \frac{1}{\sqrt{\frac{a_{11}}{\tau} + Ce^{-2\tau t}}}
\]
Cases:
\[A = F(A), \quad a_{11} = 0 \quad \Rightarrow \quad A = \frac{1}{\sqrt{e}} e^{\frac{t}{e}} \]
\[\rightarrow \infty \quad a_{ii} \rightarrow \infty \quad \forall > 0 \]
\[a_{ii} > 0 \quad \Rightarrow \quad A \rightarrow \sqrt{\frac{e}{d_{ii}}} \quad \text{as} t \rightarrow \infty \quad \forall > 0 \]

\(A \)
\[\sqrt{\frac{e}{d_{ii}}} \]
\[a_{11} \text{ absent} \]
\[a_{11} \text{ present} \]

Now, take the model eq: \[L \phi = D^2 \phi - K \phi_{xx} \]
\[\phi = \phi_1 + \varepsilon \phi_2 + \varepsilon^2 \phi_3 + \ldots \]
\[\phi_1 = 0 \quad \text{and} \quad \phi_1 = A \cos kx \sin z \quad \text{proven} \quad \hat{A} = \nabla A \]

Also, \[L \phi_2 = \phi_1 \phi_2 = \frac{A^2}{4} \left(1 + \cos 2kx \right) \sin 2z \]
and \[\phi_2 = A^2 \left(\frac{1}{k} \sin 2z + \frac{1}{k \cos 2kx} \sin 2z \right) \]
with \(\hat{A} = \nabla A \) still.

Next eq:
\[L \phi_3 \equiv -\frac{\partial \phi_3}{\partial t} + \nabla^2 \phi_3 - R \phi_{3xx} = \left(\phi_1 \phi_2 \right) \]
\[= A^2 \left(\frac{1}{k} \sin 2z \cos kx \right) + \ldots \]
\[\varphi_3 = A \sin z \cos kx + \ldots \]

So that
\[\frac{dA}{dt} - k^2 (R - R_0) A = \left(\frac{1}{a_{11}} \right) A^3 \]

\[\frac{dA}{dt} = -k^2 (R - R_0) A - a_{11} A^3 \]

Time-independent soln. : \[A = 0 \]
\[A^2 = \frac{k^2 (R - R_0)}{a_{11}} \]

The A^2 soln is exactly the solution we get through bifurcation theory. So the bifurcation soln is the soln of the Landau eqn. So the Landau approach includes the bifurcation approach.

Stability of solution, \[A = \sqrt[3]{\frac{k^2 (R - R_0)}{a_{11}}} \]

To do stability analysis we consider perturbations.
What is stability of solution \(A = \sqrt{\frac{k^2 (R-R_c)}{a_{ii}}} \)

(we guessed from bifurcation theory that it was stable).

Perturbation of \(A \): \(A = \bar{A} + \alpha \)

as before, \(\frac{dA}{dt} = k^2 (R-R_c)A - a_{ii} A^3 \)

\[\frac{d\alpha}{dt} = k^2 (R-R_c) \bar{A} + k^2 (R-R_c) \alpha - a_{ii} (\bar{A} + \alpha)^3 \]

\[= k^2 (R-R_c) \alpha - 3a_{ii} \bar{A}^2 \alpha \]

\[= k^2 (R-R_c) \alpha - 3k^2 (R-R_c) \alpha \]

\[\frac{d\alpha}{dt} = -2k^2 (R-R_c) \alpha \]

\[\therefore \text{ Stable } \left(\frac{d\alpha}{dt} < 0 \right) \text{ if } R > R_c \]

Recall that this solution only existed if \(R > R_c \).

\[\therefore \text{ guess from bifurcation theory was correct. } \]

\[\therefore \text{ For the conditions of existence, the solution is stable } \]

[Diagram of stability region]
Now suppose \(a_{ii} < 0 \) \(\forall i \).

Then the solution eq becomes,

\[
k^2 (R - R_0) A + b_{ii} A^3 = 0
\]

solutions, \(A = 0 \)

\[
A^2 = \frac{-k^2 (R - R_0)}{b_{ii}}
\]

\(A \) must be real, which is only true if \(R < R_L \) \((b_{ii} > 0) \)

This gives \textit{subcritical bifurcation},

\[
\begin{array}{c}
A \\
\downarrow \\
\searrow \\
R_L
\end{array}
\]

and,

\[
\frac{dA}{dt} = k^2 (R - R_0) + b_{ii} A^3 = -2k^2 (R - R_L) A
\]

\(\Rightarrow \text{unstable since } R < R_L \)

Thus, the sign of \(a_{ii} \) decides whether you have a \textit{supercritical} or \textit{subcritical bifurcation}.

\(a_{ii} \) is the \textit{Landau constant}.\]
For \(\frac{dA}{dE} = rA \pm a_{11} A^3 \)
\(a_{11} > 0 \) Taylor - Couette, (super)
\(a_{11} \geq 0 \) Bénard (depending on structure of the problem)
\(a_{11} < 0 \) Channel flow, (sub)

Bifurcation Theorem

\[
\frac{dx_i}{dt} = \sum_{j=1}^{n} a_{ij}(R) x_j + F_i(x_1, \ldots, x_n)
\]

in vector form:

(1) \[
\frac{dx}{dt} = Ax + F, \quad \text{where } A = A(R) \text{ and } A \text{ is a real parameter.}
\]

\(F \) is a polynomial function of \(x_1, x_2, \ldots, x_n \) of degree 2 at least.

\(F(0) = 0 \Rightarrow x = 0 \) is a solution of (1)

Consider linearized problem,

\[
\frac{dx}{dt} = Ax
\]

Sol.
\[
x = x_0 e^{At}, \quad T = s = \omega A =
\]
Stability is decided by eigenvalues of A.

1. If all eigenvalues of A have negative real parts, then $x = 0$ is a stable (asymptotically) solution of (1) for sufficiently small disturbances.

2. If A has an eigenvalue with a positive real part, then $x = 0$ is an unstable solution of (1).

3. If as R increases through some R_c, a single eigenvalue of A changes from real negative to real positive, then a solution bifurcates from $x = 0$ at $R = R_c$.

4. Under conditions of (3), and if all eigenvalues have real parts when $R < R_c$, the bifurcation solution is stable if supercritical and unstable if subcritical.
How about if τ is complex?

\[
\frac{dx}{dt} = Ax, \quad x = e^{\tau t} ; \quad \tau = \sigma + i\omega
\]

Canonical form:

\[
\frac{dx_1}{dt} = \sigma x_1 + i\omega x_2
\]

\[
\frac{dx_2}{dt} = -i\omega x_1 + \sigma x_2
\]

In complex notation, $\tau = x_1 + ix_2$

\[
\frac{d\tau}{dt} = \tau \cdot \bar{\tau}
\]

At critical point, when $\tau = 0$,

\[
\frac{dx_1}{dt} = i\omega x_2, \quad \frac{dx_2}{dt} = -i\omega x_1,
\]

\[
\frac{d^2x_1}{dt^2} + \omega^2 x_1 = 0
\]

Sol: $x_1 = \begin{cases} \cos \omega t \\ \sin \omega t \end{cases}$

Thus, eigenfunction of linear problem at criticality is periodic, with period $\frac{2\pi}{\omega}$.

Eq. in plane Poiseuille flow: linear exponential growth given by $e^{i\omega(x-ct)} = \text{temporal growth}$.