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This paper concerns the effect of steady state deflection of a wind turbine blade on its

aeroelastic stability. Modern wind turbines have long slender blades where the deflection

can be considerable. Today, most aeroelastic stability tools do not take finite blade deflec-

tion into account when computing the stability of the turbine. In this study an aeroelastic

model of a turbine blade, which include blade deflections, is developed and used for analyz-

ing the effect of steady state blade deflections on the aeroelastic stability. It is found that

the flutter speed for the RWT 63 m blade decrease when the steady state blade deflection

is included in the analysis.

Nomenclature

M̄ Mass matrix for nonlinear partial differential equations of motion
F̄ Nonlinear response function for partial differential equations of motion
f̄ External forces for nonlinear partial differential equations of motion
ū = [u, v, θ]T Vector holding the nonlinear continues blade edgewise, flapwise and torsional elastic deflections
β Blade pitch, rigid body rotation of the whole blade
φ Rotor azimuth angle
faero Vector with the aerodynamic lift and drag forces
Maero Aerodynamic twisting moment (nose up)
t Time
s Radial position measured along elastic axis from rotor center
U3/4 Apparent wind velocity in the 3/4 chord point
U Apparent wind velocity neglecting pitch rate of the blade-section
Tc Transformation from a curved frame following the chord to a frame

following the root of the blade
Tβ Transformation from a frame following the root of the blade to a frame

following the blade parallel to the rotor plane
Ut Wind speed in the rotor plane
Un Free wind speed normal to the rotor plane
w Radius from rotor center
a Non-dimensional induced velocity normal to the rotor plane
a′ Non-dimensional induced velocity in the rotor plane
ṙ3/4 Position vector of 3/4 chord point
α3/4 Angle of attack at the 3/4 chord point
α Angle of attack neglecting pitch rate of the blade-section
lpi Distance from pitch axis to elastic axis along the chord
lac Distance from elastic axis to aerodynamic center along the chord
[CL, CD, CM ] Aerodynamic lift, drag and moment coefficients
Fst Discretised steady state nonlinear equations of motion
f Discritised steady state aerodynamic forces
u0 Discritised steady state deflections
Ā, B̄ss, B̄s, B̄ Matrices for linear partial differential equations of motion

∗Research Scientist, Wind Energy Department, Risø-DTU, Technical University of Denmark, DK-4000 Roskilde, Denmark.
†Senior Scientist, Wind Energy Department, Risø-DTU, Technical University of Denmark, DK-4000 Roskilde, Denmark.

1 of 10

American Institute of Aeronautics and Astronautics

47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
5 - 8 January 2009, Orlando, Florida

AIAA 2009-839

Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



ũ Continues linear deflections, velocities and aerodynamic states
A,B Matrices for discretised linear ordinary differential equations of motion
u Discritised linear deflections, velocities and aerodynamic states

I. Introduction

This paper concerns the effect of steady state blade deflections of wind turbine blade on its stability,
especially with regards to the flutter limit. Modern wind turbines has long slender blades where the deflection
can be considerable both under normal operation around rated power and especially in some fault situations,
such as over-speed. The coupling of bending and torsion due to large flapwise blade deflection is assumed
to have some effects on the flutter limits, as discussed in Hansen.1 In this paper the effect of steady state
blade deflection on the flutter speed is analyzed by an over-speed situations. The analysis is based on the
structural blade model from Kallesøe,2, 3 which includes effect of finite blade deflections. First the structural
model is combined with an steady state aerodynamic model and discritized by an finite difference schema.
The resulting nonlinear aeroelastic model is used to compute steady state deflection of a blade from the 5
MW Reference Wind Turbine (RWT) by NREL.4 Next the structural model is combined with an unsteady
aerodynamic model5 and linearized about both the steady state deflected blade and an undeflected blade.
A finite difference discretization of this linear unsteady aeroelastic model forms a differential eigenvalue
problem, which is solved to give damping, frequencies and shapes of the aeroelastic modes of motion of
the steady state deflected blade and the straight blade. The results from the deflected blade shows good
qualitative agreement with nonlinear aeroelastic simulations with the HAWC2a6, 7 code.

II. The Model

This section deals with the description of the aeroelastic models. First, a steady state aeroelastic model
is set-up by combining the nonlinear structural model with a stationary aerodynamic model. Next, a linear
unsteady aeroelastic model is set-up. The linear model is used in two configurations, one linearized about
the steady state deflected blade, and one linearized about an undeflected blade. In the next section, the
nonlinear steady state model is used to compute the steady state blade deflections at different wind speeds,
rotor speeds, and the linear unsteady model is used to compute damping, frequencies and shapes of aeroelastic
modes of motion.

A. Structural Blade Model

The structural blade model is based on the model described in Kallesøe2, 3 using second order Bernoulli-Euler
beam theory resulting in a nonlinear partial intergro-differential equations of motion:

M̄¨̄u + F̄( ˙̄u, ū′′, ū′, ū, β̈, β̇, β, φ̈, φ̇, φ) = f̄ (faero, Maero, u
′, v′) (1)

where ū = [u(t, s), v(t, s), θ(t, s)] is the state vector holding edgewise, flapwise and torsional elastic defor-
mations, s is the radial position along the blades elastic axis, t is the time, β = β(t) is the controllable
pitch of the blade, φ = φ(t) is the azimuth angle of the rotor and the right hand side holds the effect of the
aerodynamic forces (faero, Maero) on the blade. Longitudinal forces on or in the blade, e.g. the centrifugal
force, leads to integral terms in the equation. These equations of motion includes the effect of large blade
deformation, gravity, pitch action and rotor speed variations. In this work the pitch is set to zero and kept
constant (β = 0, β̇ = 0) and the rotor speed is constant within each test case (φ̇ =cons., φ̈ = 0).

B. Aerodynamic Models

The aerodynamic forces on the blade are described by two aerodynamic models, one for steady state con-
ditions and one for unsteady conditions. These aerodynamic models are coupled to the structural model
through the apparent wind speed and angle of attack, both depending on the deformation and the motion

aAeroelastic code intended for calculating wind turbine response in time domain and has a structural formulation based on
multi-body dynamics. The aerodynamic part of the code is based on the blade element momentum theory, but extended from
the classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear effects on the induction and effects from large
deflections. It has been developed at the aeroelastic design research programme at Risø-DTU.
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of the blade. The structural model is dependent on the aerodynamic model through the aerodynamic forces
acting on the blade.

1. Apparent wind Velocity

The apparent wind velocity at the three-quarter chord point is used in the aerodynamic model. Formulated
in the coordinates along the chord (towards the leading edge), normal to the chord (towards the suction
side) and along the blade (towards the tip) the apparent wind velocity at the three-quarter chord point is:

U3/4 = TcTβ













−(Ut + wφ̇)(1 + a′)

Un(1 − a)

0






− ṙ3/4






(2)

where Tc and Tβ are the transformations from a curved frame following the chord to a frame following
the root of the blade, and from a frame following the root of the blade to a frame following the blade in
the rotor plane, respectively. Both transformations are described in Kallesøe.2, 3 The relative wind in the
rotor plane caused by rotation of the rotor is given by wφ̇, where w = w(s) is the radial distance from the
rotor center and a′ = a′(s, t) is the non-dimensional induced velocity in the rotor plane. The free inflow is
given by Un = Un(s, t) and a = a(s, t) is the non-dimensional induced velocity normal to the rotor plane.
The induced velocities can be determined by e.g. beam element momentum theory.8 The induced velocities
and tip loss are neglected in this work. Since this is a qualitative study on the effect of including large
blade deflections in the aeroelastic analysis, the quantitative differences by neglecting induced velocities and

tip loss are acceptable. The position vector r3/4 = TT
β

(

[

u + lpi v w

]T

+ TT
c

[

l3/4 0 0
]T

)

defines the

position of the three quarter chord point of the blade. The apparent wind velocity without pitch rate of the
blade section U = U3/4

∣

∣

β̈=β̇=θ̈=θ̇=0
is also used in the aerodynamic model.

2. Angle of Attack

The angle of attack is the angle between the direction of the apparent wind and the chord, which is given
byb

α = − arctan

(

U[2]

U[1]

)

and α3/4 = − arctan

(

U3/4[2]

U3/4[1]

)

(3)

without and with pitch rate of the blade section, respectively.

3. Aerodynamic Forces

The aerodynamic forces on the blade are given by

faero = TT
c

1

2
ρcU







CDU[1] + CLU[2]

CDU[2] − CLU[1]

0






(4a)

Maero =
1

2
ρc2U2CM +

(

faero[2]lac cos(θ + θ̄) − faero[1]lac sin(θ + θ̄)
)

(4b)

where U =
√

U[1]2 + U[2]2 is the apparent wind speed, ρ is the air density, lac is the distance from elastic
axis to aerodynamic center along the chord and c is the local chord. The lift, drag and moment coefficients
(CL, CD, CM ) are given by airfoil data for steady state conditions or by the unsteady aerodynamic model
by Hansen et al.5 (described shortly in Kallesøe3, 9) for unsteady conditions.

C. Steady State Aeroelastic Model

Steady state conditions are defined as: Uniform inflow (U̇n = 0 and Ut = 0) and all time derivatives in the
structural equations of motion (1) are zero ü = v̈ = θ̈ = u̇ = v̇ = θ̇ = 0.

bThe notation U[i] denotes the i’th component of the vector U.
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1. Finite Difference Discretization of the Steady State Model

The spatial derivatives of the partial differential equations of motion (1) are approximated by a second order
finite difference scheme with step size h and N computation points. The derivatives of parameters (such as
mass, stiffness, etc.) are approximated by the same finite difference scheme. Integral terms are approximated
by sums using the trapezoid rule. The boundary conditions for the finite difference formulation is derived
by inserting the finite difference approximations into the boundary conditions expressions from Kallesøe.2, 3

It is assuming that the offset of center of gravity is small at the blade tip, making the boundary condition
independent of rotor position and speed.

2. Steady State Model

The discretized version of the steady state partial differential equations of motion (1) is implemented on the
N discretization points leading to a nonlinear algebraic equation

Fst(u0, φ̇, β) = f (5)

where Fst(u0, φ̇, β) holds the terms from the discretization of the structural equations, u0 = [u1, v1, θ1

, ..., uN , vN , θN ]T holds the elastic deformation at the N discretization points and f holds the right hand
side of (1) with the forces given by the aerodynamic forces (4) computed at each discretization point with
aerodynamic coefficients from airfoil data.

3. Solution Scheme

The system of 3N nonlinear equations are solved using the following iterative scheme: 1) Choose operational
condition: Un and φ̇ and initial blade deflections u0 2) Compute apparent wind velocity and angle of attack
using (2) and (3), respectively. 3) Compute the aerodynamic forces using (4), with (CL, CD, CM ) from the
airfoil data. 4) Solve (5) for the new deflections u. 5) If not converged return to 2. This gives the steady
state deflections u0 = u0(Un, φ̇). In the next section this method is used to compute the steady state blade
deflection of the RWT blade for a speed up situation.

D. Linear Unsteady Aeroelastic Model

The nonlinear partial differential equation of motion (1) are linearized about the deflected blade position u0

and combined with the linearized unsteady aerodynamic model by Hansen et al.5 through linearized version
of the apparent wind speed (2), angle of attack (3) etc.. The linear partial differential equation is:

Ã ˙̃u +
(

Ãssũ
′′

)

′′

+
(

B̃sũ
′

)

′

+ B̃ũ = F̃f̃ (6)

where ũ = ũ(s, t) = [u1(s, t), v1(s, t), θ1(s, t), u̇1(s, t), v̇1(s, t), θ̇1(s, t), z1,1(s, t), z2,1(s, t), z3,1(s, t) , z4,1(s, t)]
T

are the linearized states and Ã = Ã(u0, φ̇0, β0, Un,0), B̃ss = B̃ss(u0, φ̇0, β0), B̃s = B̃s(φ̇0, β0), B̃ =

B̃(u0, φ̇0, β0, Un,0) are collections of the linear coefficients. All matrices are shown in Kallesøe.3 When
linearized about the deflected blade the main effect from the geometric nonlinearities are preserved since
terms like uv, which are zero when linearized about the undeflected blade, becomes u1v0 + u0v1 when lin-
earized about the deflected blade. The 0 subscript denote the steady state part and the 1 subscript denotes
the linear part. The spatial dependencies in (6) are approximated by the second order finite difference
scheme, which leads to an ordinary differential equation of aeroelastic motion:

Au̇ + Bu = 0 (7)

where A = A(u0, Un,0, φ̇0, β0) and B = B(u0, Un,0, φ̇0, β0) hold the coefficients from the finite difference
approximation of (6) and u holds the linear elastic deformations, velocities and aerodynamic states at
each discretization point. Together with clamped-free boundary conditions (at the blade root and tip,
respectively) the ordinary differential equation (7) formes a differential eigenvalue problem. The eigenvalues
and corresponding eigenvectors can be grouped in two sets: Real valued eigenvalues and complex valued
eigenvectors. The real valued eigenvalues are related to the aerodynamic states, and corresponds to time
lags of the aerodynamic. The complex valued eigenvalues are related to the structural states and gives the
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frequencies and damping of the aeroelastic modes of motion. It is noted that since aerodynamic forces are
included the eigenvalue problem (7) is not self-adjoint and therefore the eigenvectors are not orthogonal. In
next section, this model is used to compute two sets of damping, frequency and shapes of aeroelastic modes
of motion of the RWT blade for a speed up situation, one including steady state blade deflection and one
neglecting them.

III. Stability of the RWT blade

The effect of blade deflection on the aeroelastic stability is illustrated by comparing the aeroelastic modes
of blade motion with and without blade deflection. The aeroelastic modes are computed for zero pitch angle,
a wind speed on 10 m/s and a series of rotor speeds. The nonlinear steady state aeroelastic model (5) is used
to compute steady state blade deflections under the assumption of constant inflow (no shear or tower effects)
and no gravity. The linear unsteady aeroelastic model (7) is used to compute the aeroelastic frequencies,
damping and mode shapes for the deflected blade and the undeflected blade. Furthermore the same series of
rotor speeds are also simulated with nonlinear aeroelastic code HAWC26, 7 for zero pitch angle and 10 m/s
wind. The damping of the least damped mode is then estimated by the exponential decay/growth of the
initial blade oscillation.

A. Steady State Blade Deflections

The method described in the previously section is used to computer the steady state elastic blade deflections
of the RWT blade for different rotational speeds. Figure 1 shows the edgewise, flapwise blade tip deflection
and the angle of attach (AOA). The angle of attach is included to compare the blade twist of the two
models. The results from the present model are compared with results from HAWC2 simulations. The

0

0.5

1

0

5

10

0.5 1 1.5 2 2.5
0

20

40

 

 

ed
g
e

[m
]

fl
a
p

[m
]

A
O

A
[d

eg
]

radius [m]

Figure 1. Steady state tip deflection and angle of attack at 90 % radius at a free wind on 10 m/s and varying
rotational speed. Blue line: HAWC2, green line: FD with 80 nodes, and red line: FD with 90 nodes.

HAWC2 simulations are performed with an very high structural damping to suppress any unstable dynamic
effects. The results from the present model are shown for N = 80 and N = 90 discretization points. The
two results are seen to be on top of each other, indicating that the solution is converged at N = 80, and this
number of discretization point is used in the rest of this work. The is a reasonable good agreement between
the results from the present model and HAWC2 for most rotor speeds. At high rotor speeds the difference
become considerably, this is because the HAWC2 solution twist more than the present model, reducing the
angle of attach and thereby the aerodynamic forces. The second order formulation of the present model is
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only valid for a reasonable deflection, where the multi-body formulation of HAWC2 is valid for arbitrary
large deflections. So, the difference at the largest blade deflections is assumed to be caused by the different
formulations.

B. Aeroelastic Stability

The damping, frequencies and shapes of aeroelastic modes of motion for the RWT blade are computed for
both a steady state deflected blade and an undeflected blade. Figure 2 shows the aeroelastic frequency for the
first five blade modes under the different operation conditions for the undeflected and deflected blade, and the
dominant frequency of the transient response in the HAWC2 simulations. Figure 3 shows the corresponding
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Figure 2. Aeroelastic frequencies of first flapwise (red), first edgewise (black), second flapwise (blue), second
edgewise (magenta) and third flapwise (green) modes versus rotor speed. The circles (o) denotes frequencies
for the undeflected blade and crosses (x) denotes frequencies for the deflected blade. The black boxes (�)
denote the dominant frequency of the transient response of in the nonlinear simulation with HAWC2.

aeroelastic damping, except for the first and second flapwise bending modes which are highly damped and
therefore not shown.

The first edgewise bending mode (the second mode) become negative damped for rotor speeds above
1.9 rad/s for the deflected blade, while it stays positive damped for the undeflected blade. The HAWC2
simulations agree well with the result from the deflected blade. Figure 4 shows the cross section motion at
75% radius for the first edgewise mode for three different rotations speeds. The direction of vibration are
seen to shift sign for the deflected blade. The coupling of the edgewise bending with blade torsion creates
an aerodynamic coupling between edgewise and flapwise bending through the lift-torsion coupling. The
direction of vibration is related to the aerodynamic damping, and it is assumed that the negative aeroelastic
damping of the first edgewise bending mode for the deflected blade is caused by this phase shift. The second
edgewise bending mode (fourth mode) and the third flapwise bending mode (the fifth mode) become flutter
modes around 2.6 rad/s for the undeflected blade. For the deflected blade it is only the second edgewise
mode which becomes a flutter mode. The jumps in damping around 2.6 rad/s for the HWAC2 simulations
are caused by the negative damped flutter mode at theses rotation speeds. Figure 5 shows that the fourth
mode of the undeflected blade changes direction of vibration from counter clockwise to clockwise at 2.6
rad/s, and that this causes the mode to become negative damped. The deflected blade, vibrates in clockwise
direction for all the shown rotor speeds, indicating that this is the reason for the deflected blade to become
negative damped at a lower rotor speed than the undeflected blade. The third flapwise mode (fifth mode) for
the deflected blade stays positive damped for all the shown rotor speeds while the undeflected blade become
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Figure 3. Aeroelastic damping of first edgewise (black), third flapwise (green), and second edgewise (magenta)
modes versus rotor speed. The circles (o) denote damping for the undeflected blade, and the crosses (x)
denote results for the deflected blade. The black boxes (�) denote the damping of the transient response in
the nonlinear aeroelastic simulation with HAWC2.

negative damped for rotor speeds above 2.5 rad/s. The reason for this difference between the deflected and
undeflected blade is caused by the frequencies for the second edgewise mode and the third flapwise mode
become close for the undeflected blade, giving an interaction between the two modes.

It is noted that the rated rotor speed for this turbine is 1.26 rad/s. So, all the instabilities occur well
above rated rotor speed.

IV. Conclusion

The effects of steady state deflections of a wind turbine blade on its stability limits, especially with
regards to the flutter limit, are analyzed. The coupling of edgewise bending and torsion due to flapwise
blade bending are assumed to have some effects on the flutter limits of wind turbines.1 In the present
work, the aeroelastic blade model suggested by Kallesøe2, 3 is used to investigate the aeroelastic stability
limits of the RWT blade with and without the effects of the steady state blade deflection. The investigation
shows a slightly decreased flutter limit on the rotor speed due to the blade deflection, and that the first
edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a
change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic
simulations using the HAWC26, 7 code.
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Figure 4. Traces of cross-sectional blade motion at 75 % radius in the first edgewise bending mode at different
rotor speeds for the undeflected (green traces) and deflected (blue traces) blade with exaggeration of the
torsional component with a factor of 1000. Arrows denote the direction of motion. Top, middle and bottom
figures show the results for the rotor speeds 1.2, 1.5 and 2.1 rad/s, respectively. Note that the relative wind
comes from right to left in the displayed cross-sectional coordinate system.
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Figure 5. Traces of cross-sectional blade motion at 90 % radius in the second edgewise bending mode at
different rotor speeds for the undeflected (green traces) and deflected (blue traces) blade with exaggeration of
the torsional component with a factor of 300. Arrows denote the direction of motion. Top, middle and bottom
figures show the results for the rotor speeds 2.3, 2.5 and 2.7 rad/s, respectively. Note that the relative wind
comes from right to left in the displayed cross-sectional coordinate system.
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