Introduction to Aerodynamics 1

1 Introduction

e Horizontal axis wind turbine blades extract power from the wind
using the aerodynamic forces created on the rotor blades.

e The efficiency of the rotor in extracting the power from the wind
is a function of the aerodynamic characteristics of the airfoil
sections used in the design of the rotor blades.
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Figure 1: Sketch of a wind turbine showing the different blade shapes across the blade.
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2 Airfoil Geometry
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Figure 2: Geometry defining a symmetric airfoil section (a) and a cambered airfoil (b).
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Relative wind

Figure 3: Aerodynamic forces and moment acting on an airfoil.

e The angle of attack, «, is the angle that the freestream velocity
makes with the chord line of the airfoil.

e The lift force is perpendicular to the freestream velocity vector
e The drag force is parallel to the freestream velocity vector.

e The pitch moment acts at the quarter-chord location.
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Figure 4: Aerodynamic forces and moment acting on an airfoil.

e Lift coefficient per unit span, Cf,

o (1)

_— 71 .

e The lift coefficient of an airfoil section is a function of angle of
attack, Reynolds number, and Mach number, namely

Cp = f(a,Re, M) (2)

where v
Re — Poo¥xC (3)

[hoo

and v

M= -, 4
- ()
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e Similarly, for drag coefficient per unit span, C'p and the pitching
moment coefficient about quarter-chord location per unit span,

CMC/4 are
D
CD:W:f(aaReaM) (5)
and
M
A M) . 6
CMC/4 %pooVO%CZf(a/’Rej ) ( )

Unaversity of Notre Dame AME 40530
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e On a wind turbine rotor, the velocity at any section along the ro-
tor blade is a function of the wind speed, V., and the rotational
velocity of the rotor blade, Qr

— r iIs a radial location along the rotor blade
— (2 is the rotation rate with units of radians/seconds

e The maximum resultant velocity (at the rotor blade tip, r = R)
is the vector sum of the two velocity components, namely

Vi = (V2 + (QR)” (7)

e The cut-out wind speed for modern large wind turbines is around
25 to 30 m/s.

e LFor typical rotational velocities of the rotor blades, the maxi-
mum resultant velocity is well below the Mach numbers where
compressibility has any effect on the aerodynamic performance.

e Therefore,

Cr = f(a, Re) (8)
C1D - f(Oé,R@) (9)
Crigyy = f (a, Re) . (10)
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3 Airfoil Aerodynamics

e Lift coefficient versus angle of attack for a symmetric airfoil
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Figure 5: Sample lift coefficient versus angle of attack for a thick symmetric airfoil section.

e Drag coefficient versus angle of attack for a symmetric airfoil
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Figure 6: Drag coefficient versus angle of attack for the same airfoil section that produced
the lift coefficient versus angle of attack shown in Figure 5.
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4 Airfoil Geometry

e The geometry of the airfoil influences its aerodynamic properties.

e In the years from the 1970s to the early 1980s, the wind turbine
electric power industry used a number of airfoil designs that were

developed by the NACA.

— The NACA-23XX, NACA-44XX, and NACA-63XXX which
are part of the NACA four, five or six digit numbering system
used to classify the cross-sectional geometry.

e Example NACA-0006: Symmetric, t/c = 0.06
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Figure 7: Aerodynamic characteristics of a NACA-0006 airfoil section.
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e Example NACA-0012: Symmetric, t/c = 0.12
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Figure 8: Aerodynamic characteristics of a NACA-0012 airfoil section.
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e Example NACA-0012: Cambered, t/c = 0.12
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Figure 9: Aerodynamic characteristics of a NACA-4412 airfoil section.
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Table 1: Summary of effects of airfoil geometry on aerodynamic characteristics

Reynolds Number

Increasing Reynolds number delays flow
separation to a higher angles of attack, in-
creasing ;. and as.

Nose Radius

Nose radius increases with increasing t/c.
Increasing nose radius increases Cj,_ and
Q.

Airfoil t/c

C),... increases with increasing t/c up to
t/c ~ 15%. Further increases in t/c de-
crease C, ..

Camber

Adding camber shifts the zero lift angle of
attack to negative values, and shifts the
drag bucket to angles of attack with pos-
itive lift, allowing those design lift condi-
tions to have minimum drag.

Surface Roughness

Surface roughness near the leading edge of
an airfoil can lead to early stall that results
in a lower C}__ and increased C,_ , and
as a result a lower (C;/Cy)maz-
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5 Airfoil Sensitivity to Leading edge Roughness

e Surface roughness near the leading edge of an airfoil can signifi-
cantly modify the aerodynamic characteristics.
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Figure 10: Effect of leading edge roughness on the lift-to-drag ratio versus angle of attack of
a NACA-4412 airfoil section.

e Sources of roughness:

— insect strikes
— ice and frost
— abrasion due to wind-borne particles such as sand and dirt

e Led to development of rotor airfoil section shapes that are more
tolerant to surface roughness.
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6 New Airfoil Designs for the Wind Power Industry

THIN-AIRFOIL FAMILY
FOR MEDIUM BLADES

L Emww)

TIP-REGION AIRFOIL, 95% RADIUS

NREL S805A -
~____ /

PRIMARY OUTBOARD AIRFOIL, 75% RADIUS

ROOT-REGION AIRFOIL, 30% RADIUS

Design Specifications -

Airfoil’ | r/R | Re.No.| tc Clmax Cdmin | ©
(x108)
S806A | 0.95 1.3 0.115 1.1 0.004 | -0.05
S805A |075| 10 |0.135] 1.2 0.005 | -0.05
S$807 | 0.30 0.8 |0.180 1.4 0.010 | -0.10
S808 | 0.20 0.4 0.210 1.2 0.012 | -0.12

Figure 11: NREL thin-airfoil family for use in medium sized wind turbine blades.
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THICK-AIRFOIL FAMILY
FOR MEDIUM BLADES

" TIP-REGION AIRFOIL, 95% RADIUS

NREL S819

\_/ ,

PRIMARY OUTBOARD AIRFOIL, 75% RADIUS

ROOT-REGION AIRFOIL, 40% RADIUS

Design Specifications

Airfoll | r/R |Re.No. | Uc Cimax Cdmin | Cmo
{x108) .
S820 |0.95 1.3 0.160 1.1 0.007 | -0.07
8819 | 0.75 10 (0210 1.2 0.008 | -0.07
S821 [(040| 0.8 |0.240 14 0.014 | -0.15

Figure 12: NREL thick-airfoil family for use in medium sized wind turbine blades.

Unaversity of Notre Dame AME 40530



Introduction to Aerodynamics 15

THICK-AIRFOIL FAMILY
FOR LARGE BLADES

— ——

TIP-REGION AIRFOIL, 95% RADIUS

NREL S812

\_/ i

PRIMARY OUTBOARD AIRFOIL, 75% RADIUS

.

ROOT-REGION AIRFOIL, 40% RADIUS

Design Specifications

Airfoil | r/R | Re. No. | tic Clmax Cdmin | Cme
{x108) ,
S813 |0.95| 2.0 (0.160] 1.1 0.007 | -0.07
$812 0751 2.0 |0.210] 1.2 0.008 | -0.07 |-
§814 | 0.40 1.5 0.240 1.3 0.012 | -0.15
S815 10301 1.2 §0260]| 1.1 0.014 | -0.15

Figure 13: NREL thick-airfoil family for use in large sized wind turbine blades.
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THICK-AIRFOIL FAMILY
FOR LARGE BLADES

NREL S80%

TIP-REGION AIRFOIL, 95% RADIUS

NREL S814

S

PRIMARY OUTBOARD AIRFOIL, 75% RADIUS

N —

ROOT-REGION AIRFOIL, 40% RADIUS

Design Specifications
Airfoil | /R | Re.No. | tc Clmax Cdmin | Cmo
{x108)
S$810 | 0.95 20 |0.180 0.9 0.006 | -0.05
$809 | 0.75 2.0 |0.210 1.0 - | 0.007 | -0.05
S814 | 0.40 1.5 10.240 1.3 0.012 | -0.15
S$815 | 0.30 1.2 11 0.014 | -0.15

0.260

Figure 14: NREL thick-airfoil family for use in large sized wind turbine blades.
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Table 2: Estimated Annual Energy Improvements from NREL Airfoil Series

Turbine Roughness Correct Low Tip Total
Type Insensitive C,,,. | Reynolds No. Clonas Improvement
Stall Regulated 10% to 15% 3% to 5% | 10% to 15% | 23% to 35%
Variable Pitch 5% to 15% 3% to 5% - 8% to 20%
Variable RPM 5% 3% to 5% - 8% to 10%
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