Wind Turbine Control

• The control system on a wind turbine is designed to:
 1. seek the highest efficiency of operation that maximizes the coefficient of power, \(C_p \),
 2. ensure safe operation under all wind conditions.

• Wind turbine control systems are typically divided into three functional elements:
 1. the control of groups of wind turbines in a wind farm,
 2. the supervising control of each individual wind turbine, and
 3. separate dedicated dynamic controllers for different wind turbine sub-systems.

• Generally, there exists an optimum tip-speed-ratio, \(\lambda \) that maximized \(C_p \).
 – The exact \(\lambda \) depends on the individual wind turbine design \((6 \leq \lambda \leq 8)\)
Figure 1: Example of the relation between the rotor tip-speed ratio and rotor pitch angle on the coefficient of power for a 600kW two-bladed horizontal wind turbine.

- The sensitivity of C_p to λ motivates closed-loop control focusing on the rotation frequency.

Figure 2: Schematic of a wind turbine closed-loop control system.
1 Axial Induction Control

Recall that the rotor blade tip speed ratio, λ is

$$\lambda = \frac{\Omega R}{U_\infty}. \quad (1)$$

The power generated from the wind is

$$P_{aero} = Q\Omega \quad (2)$$

where Q is the total torque generated by the rotor.

The coefficient of power, C_p, is the ratio of the aerodynamic power extracted from the wind and the available aerodynamic power or,

$$C_p = \frac{P_{aero}}{P_{available}}. \quad (3)$$

The local axial and tangential induction factors are defined as

$$a = 1 - \frac{U_x}{U_\infty} \quad (4)$$

and

$$a' = \frac{U_y}{\Omega r} - 1 \quad (5)$$

where U_x and U_y are the respective axial and tangential velocities in the rotor plane.

The local flow angle at a given radial location on the rotor is then

$$\phi_r = \tan^{-1}\left(\frac{U_y}{U_x}\right) = \tan^{-1}\left(\frac{U_\infty(1 - a)}{\Omega r(1 + a')}\right) = \tan^{-1}\left(\frac{(1 - a)}{(1 + a')\lambda_r}\right) \quad (6)$$

where λ_r is the local tip speed ratio at the radial position, r.

The local effective rotor angle of attack at any radial location is then

$$\alpha_r = \phi_r - \psi_r - \theta \quad (7)$$
where ϕ_r is again the local flow angle, ψ_r is the local rotor twist angle, and θ is the global rotor pitch angle which is constant over the rotor radius.

The local lift and drag coefficients, $C_l(r)$ and $C_d(r)$, at a radial location on the rotor are then

$$C_l(r) = C_y \cos(\phi_r) - C_x \sin(\phi_r)$$

and

$$C_d(r) = C_y \sin(\phi_r) + C_x \cos(\phi_r)$$

where C_x and C_y are the force coefficients in the tangential and normal directions of the rotor section at the effective angle of attack, α_r.

The differential torque produced by radial segment of the rotor at radius, r, is

$$dQ = 4\pi \rho U_\infty (\Omega r)a'(1-a)r^2dr - \frac{1}{2}\rho W^2 NcC_d \cos(\phi_r) rdr. \quad (10)$$

To simplify, the second term in Equation 10 is dropped (neglecting the drag on the rotor). The differential torque is then

$$dQ = 4\pi \rho U_\infty (\Omega r)a'(1-a)r^2dr. \quad (11)$$

Substituting for a' in terms of a gives

$$dQ = 4\pi \rho U_\infty^2 \frac{a(1-a)^2r^2}{\lambda} dr. \quad (12)$$

Assuming constant wind conditions (ρ and V_∞) and a fixed tip speed ratio, λ, then

$$dQ = C_1 a(1-a)^2r^2dr. \quad (13)$$

Assuming the axial induction factor is constant along the entire rotor span,

$$Q \propto a(1-a)^2. \quad (14)$$
In terms of the aerodynamic power,

\[P_{aero} = Q\Omega \quad (15) \]

or

\[P_{aero} \propto a(1 - a)^2. \quad (16) \]
Wind Farms

Figure 3: Schematic drawing of wind turbine wake model.

- The local downstream wake radius is r_1 given as

$$r_1 = \alpha x + r_r$$ \hspace{1cm} (17)

- r_0 is the physical radius of the upstream wind turbine rotor
- α is the wake entrainment constant, also known as the wake decay constant, where

$$\alpha = \frac{0.5}{\ln \left(\frac{z}{z_0} \right)}$$ \hspace{1cm} (18)

where z is the wind turbine hub height, and z_0 is the surface roughness height at the site.

- r_r is the effective radius of the upstream wind turbine rotor given as

$$r_r = r_0 \sqrt{\frac{1 - a}{1 - 2a}}.$$ \hspace{1cm} (19)
• If \(i \) is designated as the position of the wind turbine producing the wake, and \(j \) is the downstream position that is affected by the wake, then the wind speed at position \(j \) is

\[
 u_j = u_0 (1 - u_{def_{ij}})
\]

– where \(u_{def_{ij}} \) is the \textit{wake velocity deficit} induced on position \(j \) by an upstream wind turbine at position \(i \).

• The \textbf{wake deficit} can be computed through the following relation

\[
 u_{def_{ij}} = \frac{2a}{1 + \alpha \left(\frac{x_{ij}}{r_r} \right)^2}
\]

– where \(a \) is the inflow induction factor that is related to the wind turbine thrust coefficient, \(C_T \) as

\[
 a = 0.5 \left(1 - \sqrt{1 - C_T} \right)
\]

– \(x_{ij} \) is the downstream distance between positions \(i \) and \(j \).
Wind Farm Design Optimization

Figure 4: Impact of site area and number of wind turbines on wind farm efficiency.
2 Wind Turbine Acoustics

• The sound pressure level of a source in units of decibels (dB), is given as

\[L_P = 20 \log_{10} (P_{rms}/P_0) \] \hspace{1cm} (23)

– \(P_{rms} \) is the root-mean-square of the pressure fluctuations,
– \(P_0 \) is the reference threshold sound pressure level, \(P_0 = 2 \times 10^{-5}\)Pa.

2.1 Sound Pressure Measurement and Weighting

• A-scale Weighting, is the most common scale for assessing environmental and occupational noise. It approximates the response of the human ear to sounds of medium intensity.

• B-scale Weighting, approximates the response of the human ear for medium-loud sounds, around 70 dB. (not commonly used)

• C-scale Weighting, approximates the response of the human ear to loud sounds. (Can be used for low-frequency sound)

• G-scale Weighting, used for ultra-low frequency, infrasound.
2.2 dB Math

- The sum of two sound sources of 90 dB and 80 dB, in decibels, is

\[
90\text{dB} = 20 \log \left(\frac{P'_{90}}{2 \times 10^{-5}\text{Pa}} \right) = 0.632\text{Pa} \quad (24)
\]

\[
80\text{dB} = 20 \log \left(\frac{P'_{80}}{2 \times 10^{-5}\text{Pa}} \right) = 0.200\text{Pa}
\]

therefore

\[
(90 + 80)\text{dB} = 20 \log \left(\frac{0.832}{2 \times 10^{-5}\text{Pa}} \right) = 92.38\text{dB}
\]
2.3 Wind Turbine Sound Sources

Figure 5: Mechanisms for sound generation due to the air flow over the turbine rotor.

Figure 6: Sound level power scaling for different aerodynamic sound source mechanisms on the turbine rotor.
Figure 7: Sound pressure level azimuthal radiation pattern for a wind turbine.
2.4 Sound Propagation

- **A simple model** based on the more conservative assumption of hemispherical sound propagation over a reflective surface, including air absorption is

\[
L_p = L_w - 10 \log_{10} (2\pi R^2) - \alpha R
\]

(25)

- \(L_p\) is the sound pressure level (dB) a distance \(R\) from a sound source radiating at a power level, \(L_w\), (dB),
- \(\alpha = 0.005\) dB/m is the frequency-dependent sound absorption coefficient.

2.5 Noise Standards

Table 1: ISO 1996-1971 Recommendations for Community Noise Limits

<table>
<thead>
<tr>
<th>Location</th>
<th>Daytime - db(A) 7AM-7PM</th>
<th>Evening - db(A) 7PM-11PM</th>
<th>Night - dB(A) 11PM-7AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Suburban</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Urban Residential</td>
<td>45</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>Urban Mixed</td>
<td>50</td>
<td>45</td>
<td>40</td>
</tr>
</tbody>
</table>
3 Wind Turbine Energy Storage

Figure 8: Example of a two week period of system loads, system loads minus wind generation, and wind generation.

Figure 9: Comparison of different electric power storage systems with regard to power rating and discharge rate.
3.1 Battery Case Study

\[E_{\text{rated}} = C_{\text{rated}} V_{\text{nominal}} \ [W - h] \]

- \(C_{\text{rated}} \) is the amp-hour capacity of the battery
- \(V_{\text{nominal}} \) is the nominal voltage of the battery
- General restriction on the “depth of discharge” (DOD) of 50% of capacity to ensure a long operating life

Example. The usable energy of a deep-cycle lead acid battery in which \(V_{\text{nominal}} = 60V \), and \(C_{\text{rated}} = 1200\text{A-hr} \) is

\[E_{\text{usable}} = E_{\text{rated}} \cdot \text{DOD} \]
\[= (1200)(60)(0.5) \]
\[= 36[\text{kw-h}] \]

The efficiency for the battery “system” is

\[\eta_{\text{battery/inverter}} = \eta_{\text{battery}} \eta_{\text{inverter}} \cdot \]

For an average voltage inverter efficiency of 85%, The overall efficiency of the battery-inverter combination is

\[\eta_{\text{battery/inverter}} = (0.68)(0.85) = 0.578 (57.8\%) \]
3.2 Hydro-electric Storage Case Study

Figure 10: Schematic of a hydro-electric storage configuration.

- The energy generated is

\[E_{\text{hydro}} = \rho ghVOL\eta \] \hspace{1cm} (32)

where

\[\begin{align*}
VOL &= \text{water volume stored} \ [\text{m}^3] \hspace{1cm} (33) \\
h &= \text{stored water elevation (pressure head)} \ [\text{m}] \hspace{1cm} (34) \\
\rho &= \text{water density} \ [1000 \text{ kg/m}^3] \hspace{1cm} (35) \\
g &= \text{gravitational constant} \ [9.8 \text{ m/s}^2] \hspace{1cm} (36) \\
\eta &= \eta_t\eta_{\text{pipe}} \hspace{1cm} (37) \\
\eta_t &= \text{turbine efficiency} \ (0.60) \hspace{1cm} (38) \\
\eta_{\text{pipe}} &= \text{pipe flow efficiency} \ (0.90). \hspace{1cm} (39)
\end{align*} \]

- Noting that \(1J = 1W\), the stored energy in units of [kW-h] is

\[E = \frac{gVOLh\eta}{3600} \] \hspace{1cm} (40)
• The required volume of water needed to supply a given amount of energy is

\[VOL = \frac{3600E}{gh\eta} \]

(Note that 3600 s/hr is a conversion between hours and seconds)
3.3 Buoyant Hydraulic Energy Storage Case Study

- The maximum amount of stored energy is

\[E = m g \frac{h}{2} = \rho A \frac{h}{2} g \frac{h}{2} \eta_t = \rho A g \frac{h^2}{4} \eta_t \]

- \(A \) is the projected area of the floating structure
- \(A(h/2) \) is the volume of displaced water
- \(\eta_t \) is the efficiency of the turbine (\(\approx 60\% \))
4 Economics

Figure 12: Wind turbine rotor blade cost, labor cost, and baseline and advanced material cost correlations with rotor radius.

Baseline Rotor Cost = $3.1225R^{2.879}$ \hspace{1cm} (45)

$AEP = (P(V_{\text{rated}} - \text{cutout})(24)(365)(1500) = 4,312 \text{ MW-h.} \hspace{1cm} (46)$