WIND ENERGY DESIGN

THOMAS C. CORKE AND ROBERT C. NELSON

University of Notre Dame
Aerospace and Mechanical Engineering Department
Hessert Laboratory for Aerospace Research
Notre Dame, IN 46556

May, 2015

Forward

This book is intended to be a text for a senior-level Engineering course dealing with the conceptual design of a wind energy system. It is based on our experience in teaching "capstone" design classes in Aerospace Engineering for the past 20 years. The emphasis here being towards wind energy. The approach is to demonstrate how the theoretical aspects, drawn from topics on rotor aerodynamics, light-weight structures, control, acoustics, energy storage, and economics, can be applied to produce a new conceptual wind energy design. The book cites theoretical expressions where ever possible, but also stresses the interplay of different aspects of the design which often require compromises. As necessary, it draws on historical information to provide needed input parameters, especially at an early stage of the design process. In addition, historical wind energy systems are used to provide checks on design elements to determine if they deviate too far from historical norms.

The process of the conceptual design of an wind wnergy system is broken into 10 steps. These are covered in Chapters 4 to 11. The book stresses the use of interactive computational approaches for iterative and/or repetitive calculations. Sample calculations covering each step of the design are provided for each chapter, except 1 and 12. A case study of a wind energy system based on a 1.5 MW horizontal wind turbine runs through each chapter. Each part of this case study that relates to the particular chapter topic is discussed at the end of each chapter. In addition, there are individual problems at the end of each chapter in which the students are asked to document different degrees of dependence of the design characteristics on changing input conditions. Some of these problems are "open ended" and require interpretation and discussion.

The learning objective are (1) to understand how to characterize the properties of the wind resource from which the power is to be extracted, (2) to understand how to predict the performance of a horizontal axis wind turbine using Blade Element Momentum (BEM) theory, (3) to understand the blade design features and aero-dynamics that yield an efficient rotor, (4) to understand how various rotor design considerations influence the wind turbine performance, (5) to understand aspects of active control to enhance turbine performance, and (6) to understand the economic issues related to wind turbines and wind farms.

The book can be used in either of two ways. First, it can be used to develop a <u>complete</u> conceptual design of a new wind energy system. This is the way that we personally teach this material. Starting at the beginning, the students develop

a complete design (similar to the case study) in a step-by-step fashion. This is accomplished over one semester (15 weeks).

The second use of the book is to consider individual aspects of a wind energy system without developing a complete design. This approach makes the best use of the problem sets at the end of each chapter. The effect of different input parameters can be easily investigated, and optimums can be sought. We know of instructors who prefer this approach.

The following is a list of chapters.

Chapter 1: Introduction

Chapter 2: Atmospheric Boundary Layer and Wind Characteristics

Chapter 3: Introduction to Aerodynamics

Chapter 4: Aerodynamic Performance of a Wind Turbine Rotor

Chapter 5: Wind Turbine Control

Chapter 6: Structural Design

Chapter 7: Wind Farms

Chapter 8: Wind Turbine Acoustics

Chapter 9: Wind Energy Storage

Chapter 10: Wind Energy Economics

Chapter 11: Design Summary and Trade Study

Chapter 12: New Concepts

For a complete conceptual design, the chapters are intended to be followed in chronological order. A conscious attempt has been made to include within each chapter, all of the supplementary material that is needed to develop that aspect of the design. This minimizes the need to search for formulas or graphs in other chapters or references.

The Chapter 11 summarizes the case study which runs throughout the text, and discusses the role of a Trade Study on a complete design. This is illustrated with the case study design, and in the problems at the end of the chapter. Chapter 12 presents new concepts for wind energy. Some of these are topical which leads to a discussion on the motivation and practicality of the concepts.

T. Corke and R. Nelson June, 2016

Contents

1	Inti	roduction	9
	1.1	History of Wind Energy	9
		1.1.1 Modern Era of Wind Energy	22
2	Wi	nd Regimes	33
	2.1	Origin of Wind	33
	2.2	Atmospheric Boundary Layer	34
	2.3	Temporal Statistics	38
	2.4	Wind Speed Probability	39
	2.5	Statistical Models	42
		2.5.1 Weibull Distribution	42
		2.5.2 Methods for Weibull model fits	46
		2.5.3 Rayleigh Distribution	51
	2.6	Energy Estimation of Wind Regimes	52
		2.6.1 Rayleigh-based Energy Estimation Approach	55
	2.7	Wind Condition Measurement	59
		2.7.1 Wind Speed Anemometers	59
3	Inti	roduction to Aerodynamics	65
4	Aer	odynamic Performance	67
	4.1	Momentum Theory	67
	4.2	Momentum Theory with Wake Rotation	79
	4.3	Blade Element Momentum (BEM) Theory	84
	4.4	Prandtl's Tip Loss Factor	89
	4.5	Solution of the BEM Equations	91
		4.5.1 Example BEM Equation Solution	92

6 CONTENTS

5	Wiı	nd Turbine Control	103			
	5.1	Aerodynamic Torque Control	106			
		5.1.1 Electrical Torque Control	107			
	5.2	Wind Turbine Operation Strategy	109			
		5.2.1 Fixed Speed Designs	109			
		5.2.2 Variable Speed Designs	110			
		5.2.3 Variable Speed Adaptive Torque Control	112			
	5.3	Axial Induction Control	113			
6	Str	uctural Design	127			
	6.1	Rotor Response to Loads	133			
	6.2	Rotor Vibration Modes	139			
	6.3	Design for Extreme Conditions	143			
7	Wiı	nd Farms	147			
		7.0.1 Wind Turbine Wake Effects	148			
		7.0.2 Wind Farm Design Optimization	153			
8	Wind Turbine Acoustics 15					
	8.1	Acoustics Fundamentals	156			
	8.2	Sound Pressure Measurement and Weighting	158			
	8.3	dB Math	160			
	8.4	Low Frequency and Infrasound	161			
	8.5	Wind Turbine Sound Sources	162			
	8.6	Sound Propagation	167			
	8.7	Background Sound	169			
	8.8	Noise Standards	170			
9	Wiı	nd Energy Storage	173			
	9.1	Electro-chemical Energy Storage	174			
		9.1.1 Lead-acid Batteries	174			
		9.1.2 Nickel-based Batteries	176			
		9.1.3 Lithium-based Batteries	177			
		9.1.4 Additional Electro-chemical Storage Technologies	177			
		9.1.5 Sodium Sulfur Batteries	178			
		9.1.6 Redox Flow Battery	179			
		9.1.7 Metal-air Battery	179			
	9.2	Supercapacitor Storage	180			

CONTENTS 7

	9.3	Hydrogen Storage	32
	9.4	Mechanical Energy Storage Systems	34
		9.4.1 Pumped Storage Hydroelectricity	34
		9.4.2 Compressed Air Storage	35
		9.4.3 Flywheel Storage	38
	9.5	CAES Case Study) 0
		9.5.1 Cost Function)4
		9.5.2 Net Benefit) 7
	9.6	Battery Case Study)8
	9.7	Hydro-electric Storage Case Study	00
	9.8	Buoyant Hydraulic Energy Storage Case Study)1
10	Eco	nomics 20)5
	10.1	Cost of Energy, COE)6
		Component Estimate Formulas	
	10.3	Example Cost Breakdown	19
		Summary	21
11	Desi	ign Summary and Trade Study 22	23
12	New	v Concepts 22	25
	12.1	Vertical Axis Wind Turbine	25
		Wind Focusing Concepts	
		Bladeless Wind Turbine Concepts	
		12.3.1 Airborne Wind Turbine Concepts	
	12.4	Other Concepts	37